Earth, our home in space, has supported life for a long time. But with a growing human population, people are having a greater effect on the environment than ever before. Together we must learn about the problems facing our environment and work to protect the earth.


There are many ways we can work together to protect the earth. We can ask adults to use more fuel-efficient cars (cars that get more miles per gallon of gasoline). We can ride bikes or walk instead of getting rides in cars. We can recycle aluminum, paper, plastic, and glass, and we can plant trees. We can save energy by turning off lights when they are not in use. We can save energy by not keeping rooms and buildings too hot in the winter or too cold in the summer. Another way we can help the earth is to learn more about the environment.


Please login or register to read the rest of this content.

Let’s see how much you’ve picked up with these experiments and the reading – answer as best as you can. (No peeking at the answers until you’re done!) Just relax and see what jumps to mind when you read the question. You can also print these out and jot down your answers in your science notebook.


Please login or register to read the rest of this content.

Let’s see how you did! If you didn’t get a few of these, don’t let it stress you out – it just means you need to play with more experiments in this area. We’re all works in progress, and we have our entire lifetime to puzzle together the mysteries of the universe!


Here’s printer-friendly versions of the exercises and answers for you to print out: Simply click here for printable questions and answers.


Answers:
Please login or register to read the rest of this content.


Without the sun, there would be no life on Earth. The sun warms the earth, generates wind, and carries water into the air to produce rain and snow. The energy of the sun provides sunlight for all the plant life on our planet, and through plants provides energy for all animals.


The sun is like a giant furnace in which hydrogen nuclei (atoms without electrons) are constantly smashed together to form helium nuclei. This process is called nuclear fusion. In this process, 3.6 billion kilograms (8 billion pounds) of matter are converted to pure energy every second. The temperature in the sun exceeds 15 million degrees.


Nuclear fusion is one kind of energy. Other forms of energy include: mechanical energy, heat, electrical energy, chemical energy, and light. Mechanical energy is the energy of organized motion, such as a turning wheel. Heat is the energy of random motion, such as a cup of hot water. Electrical energy is the energy of moving charged particles or electrons, such as a current in a wire. Chemical energy is the energy stored in bonds that hold atoms together. Light is any form of electromagnetic waves, such as X rays, microwaves, radio waves, ultraviolet light, or visible light.


Energy can be converted from one from to another. For example, the nuclear energy of the sun is converted to light, which goes through space to the earth. Solar collectors of mirrors can be used to focus some of that light to heat water to steam. This steam can be used to turn a turbine, which can power a generator to produce electricity.


Most of our energy needs are met by burning fossil fuels such as coal, oil, gasoline, and natural gas. The chemical energy stored in these substances is released by burning these fuels. When fossil fuels burn, they combine with oxygen in the air and produce heat and light.


Fossil fuels are not renewable. When they are used up, they are gone forever. However, renewable energy sources such as wind, sun, geothermal, biomass and water power are renewable. They can be used over and over to generate the energy to run our society.


Tremendous amounts of renewable energy are available. For example, the solar energy that falls on just the road surfaces in the United States is equal to the entire energy needs of the country. Although there are sufficient amounts of renewable energy, we must improve our methods of collecting, concentrating, and converting renewable energy into useful forms.


In the following experiments, you will learn something about the amount of energy the sun produces at the earth’s surface and how heat energy can be stored.
Please login or register to read the rest of this content.


Temperature is a measure of the average hotness of an object. The hotter an object, the higher its temperature. As the temperature is raised, the atoms and molecules in an object move faster. The molecules in hot water move faster than the molecules in cold water. Remember that the heat energy stored in an object depends on both the temperature and the amount of the substance. A smaller amount of water will have less heat energy than a larger amount of water at the same temperature.


Increasing the temperature of a large body of water is one way to store heat energy for later use. A large container filled with salt water, called brine, may be used to absorb heat energy during the day when it is warm. This energy will be held in the salt water until the night when it is cooler. This stored heat energy can be released at night to warm a house or building. This is one way to store the sun’s heat energy until it is needed.


Solar ponds are used to store energy from the sun. Temperatures close to 100°C (212°F) have been achieved in solar ponds. Solar ponds contain a layer of fresh water above a layer of salt water. Because the salt water is heavier, it remains at the bottom of the pond-even as it gets quite hot. A black plastic bottom helps absorb solar energy from sunlight. The water on top serves to insulate and trap the heat in the pond.


In a fresh water pond, as the water on the bottom is heated from sunlight, the hot water becomes lighter and rises to the top of the pond. This convection or movement of hot water to the top tends to carry away excess heat. However, in a salt water pond, there is no convection so heat is trapped. In Israel a series of salt water, solar ponds were developed around the Dead Sea. The heat stored in these solar ponds has been used to run turbines and generate electricity.
Please login or register to read the rest of this content.


The United States has large reserves of coal, natural gas, and crude oil which is used to make gasoline. However, the United States uses the energy of millions of barrels of crude oil every day, and it must import about half its crude oil from other countries.


Burning fossil fuels (oil, coal, gasoline, and natural gas) produces carbon dioxide gas. Carbon dioxide is one of the main greenhouse gases that may contribute to global warming. In addition, burning coal and gasoline can produce pollution molecules that contribute to smog and acid rain.


Using renewable energy-such as solar, wind, water, biomass, and geothermal-could help reduce pollution, prevent global warming, and decrease acid rain. Nuclear energy also has these advantages, but it requires storing radioactive wastes generated by nuclear power plants. Currently, renewable energy produces only a small part of the energy needs of the


United States. However, as technology improves, renewable energy should become less expensive and more common.


Hydropower (water power) is the least expensive way to produce I electricity. The sun causes water to evaporate. The evaporated water falls to the earth as rain or snow and fills lakes. Hydropower uses water stored in lakes behind dams. As water flows through a dam, the falling water turns turbines that run generators to produce electricity.


Currently, geothermal energy (heat inside the earth), biomass (energy from plants), solar energy (light from concentrated sunlight), and wind are being used to generate electricity. For example, in California there are more than sixteen thousand (16,000) wind turbines that generate enough power to supply a city the size of San Francisco with electricity.


In addition to producing more energy, we can also help meet our energy needs through conservation. Conservation means using less energy and using it more efficiently.


In the following experiments, you will use wind to do work, examine how batteries can store energy, and see how insulation can save energy.
Please login or register to read the rest of this content.


A battery is a device that produces electrical energy from a chemical reaction. Another name for a battery is voltaic cell. Voltaic means to make electricity.

Most batteries contain two or more different chemical substances. The different chemical substances are usually separated from each other by a barrier. One side of the barrier is the positive terminal of the battery and the other side of the barrier is the negative terminal. When the positive and negative terminals of a battery are connected to a circuit, a chemical reaction takes place between the two different chemical substances that produces a flow of electrons (electricity).

When a battery is producing electricity, one of the chemical substances in the battery loses electrons. These electrons are then gained by the other chemical substance.

A battery is designed so that the electrons lost by one chemical substance are made to flow through a circuit, such as a flashlight lamp, before being gained by the other chemical substance. A battery will produce a flow of electrons until all of the chemical substances involved in the chemical reaction are completely used.

Please login or register to read the rest of this content.



An insulator is a substance that partly blocks or slows the flow of heat through it. Styrofoam is a lightweight plastic used in drinking cups. Styrofoam is a good insulator. A cooler or ice chest that is made of Styrofoam or some other insulator tends to block the flow of heat through it.


Heat flows into buildings during warm summer months and from buildings during cold winter months. Energy must be used to cool buildings in the summer and heat them in the winter. Since insulation can slow the flow of heat, the use of insulation in buildings can save energy.


Some common home and building insulation materials include Styrofoam, polyurethane foam, and fiberglass. These materials are all good insulators, which means that they are poor conductors of heat. Placing these insulating materials on attic floors or in building walls tends to trap heat inside during the cold winter and keep heat out during the hot summer.


Plastic foams filled with trapped gas tend to block heat flow. The chemicals used to make polyurethane foam can be sprayed directly into the spaces between walls. These chemicals produce carbon dioxide gas and polyurethane plastic. The gas tends to spread the polymer apart so the weight is mostly plastic but the volume is mostly trapped gas. Polyurethane also is used to insulate refrigerators, refrigerated trucks, pipes, and building walls.


Fiberglass insulation is frequently used in attic floors to insulate homes. Also, fiberglass insulation is used to insulate the Trans-Alaska pipeline. This pipe carries oil 800 miles from Prudhoe Bay in northern Alaska to Valdez in southern Alaska. The crude oil that travels through this pipe is easier to pump if it is hot. An insulated pipeline requires less energy to keep the oil hot.


Energy conservation becomes more and more important as energy costs rise. A great deal of energy is used to cool buildings in summer and heat buildings in winter. Less energy will be needed if buildings are well insulated and energy is not wasted.
Please login or register to read the rest of this content.


Cooling and heating are opposite processes. Cooling is the removal of heat energy from an object or space and heating is the addition of heat energy to an object or space. We use these opposite processes a great deal in our daily lives. For example, in the kitchen we use the cooling provided by a refrigerator to keep food cold. We also use the heat from a stove to cook food.


Nearly 75 percent of the energy used by the average family household in the United States goes for cooling and heating purposes. Air conditioning and refrigeration are the major cooling requirements of a home, while water and space heating are the most important heating requirements.


In the experiments that follow you will learn more about cooling and heating. You will also learn alternative ways of cooling and heating, using such unusual materials as gases, salts, water, and trees.
Please login or register to read the rest of this content.


Having shade trees around a house can decrease the cost of cooling the house with air conditioning. A house not shaded from the sun absorbs some of the light from the sun and heats up the outside surface of the house. If the house is poorly insulated, some of this heat will penetrate into the house, heating up the inside. The air conditioner will use more energy to remove this added heat.


Properly designed roof overhangs can significantly decrease the heating and cooling costs of a house. Because the earth’s axis is tilted, the sun is lower in the winter in the northern hemisphere. In the summer, the sun is higher in the sky. A properly designed roof overhang allows sunlight in the winter to shine through windows and warm the furnishings in the rooms that receive the direct sunlight. This reduces the heating cost in the winter. In the summer, the overhang blocks the sunlight from shining into the window and heating the furnishings. This reduces the cooling cost in the summer.
Please login or register to read the rest of this content.


The evaporation of water for cooling purposes is called evaporative cooling. An important example of this type of cooling is the removal of body heat by humans through sweating. When your body needs to cool, perspiration is released to the surface of your skin where it evaporates. The evaporation of the water in the perspiration causes your skin to cool.


Breezes feel particularly cooling when you have perspiration on your skin. This is because the increased movement of air over your body evaporates more water from your skin than still air does. Water on your skin evaporates more slowly when the humidity is high. This is because the humid air already contains much water vapor. Humid air absorbs less water as vapor than dry air.


Electrical power plants that burn fossil fuels or use nuclear energy to generate electricity use huge water cooling towers for cooling purposes. The water to be cooled is pumped to the top of the tower and allowed to drip down through the tower. As the water moves down the tower, air from the bottom of the tower moves up through the tower, evaporating some of the falling water. The heat lost by the evaporating water cools the remaining water that is collected in a basin under the tower. One pound of water that evaporates in a tower can lower the temperature of 100 pounds (45 kilograms) of other water by nearly 50°C (100°F).
Please login or register to read the rest of this content.


In a typical air conditioning or refrigeration system, a liquid at high pressure is allowed to pass through a valve from a higher pressure to a lower pressure. As the liquid enters the lower pressure region, it changes from a liquid to a gas. This change causes a cooling effect. The liquid cools as it changes to a gas.


In a cooling system, such as a refrigerator or air conditioner, this cold gas is used to cool a box (refrigerator) or a room (air conditioner). Then the cool gas is forced through a compressor pump where it undergoes a warming effect and changes back to a liquid. This excess heat is removed before the liquid is expanded to a gas again. In an air conditioner, the excess heat is blown outside.


Special molecules containing chlorine, fluorine, and carbon atoms are used in most cooling systems. These Freon or chlorofluorocarbon (CFC) molecules are used because they are stable, nontoxic, and will not burn.


In recent years, scientists have discovered that these Freon or CFC molecules are damaging the earth’s ozone layer. Ozone molecules in the upper atmosphere block harmful ultraviolet radiation from reaching the earth. Because these CFC molecules are so stable they tend to stay in the atmosphere for many years, during which time they gradually spread to the upper atmosphere.


In the upper atmosphere, CFC molecules can release chlorine atoms. These atoms cause a chemical reaction that breaks apart ozone. One chlorofluorocarbon molecule may destroy thousands of ozone molecules. Scientists and engineers are looking for new methods of cooling and new gases that are less damaging to the ozone layer.


The main energy used in operating a cooling system is the energy required to run a compressor to force a gas to a higher pressure, where it will change back to a liquid. This energy is normally supplied by electricity or by burning natural gas to run a compressor pump. However, there are systems in which solar energy is used to supply the energy needed for cooling.
Please login or register to read the rest of this content.


The energy of sunlight powers our biosphere (air, water, land, and life on the earth’s surface). About 50 percent of the solar energy striking the earth is converted to heat that warms our planet and drives the winds. About 30 percent of the solar energy is reflected directly back into space. The water cycle (evaporation of water followed by rain or snow) is powered by about 20 percent of the solar energy.


Some of the sunlight that reaches the earth is used by plants in photosynthesis. Plants containing chlorophyll use photosynthesis to change sunlight to energy. Since these green plants form the base of the food chain, all plants and animals depend on solar energy for their survival.


When the sun is overhead, about 1,000 watts of solar power strike 1 square meter (10.8 square feet) of the earth’s surface. Using solar cells, this solar energy can be converted to electricity. However, because sunlight cannot be converted completely to electricity, it takes at least a square meter of area to gather enough sunlight to run a 100-watt light bulb.


Solar energy is still more expensive than other methods of generating electricity. However, the cost of solar electricity has greatly decreased since the first solar cells were developed in 1954.


It has been proposed that panels of solar cells on satellites in orbit above the earth could convert solar energy to electricity twenty-four hours a day. These huge solar power satellites could convert electrical energy to microwaves and then beam these microwaves to Earth. At the earth’s surface, tremendous fields covered with antennas could convert the microwave energy back to electricity.


It would take thousands of astronauts many years to build such a complicated system. However, there are many practical uses of solar energy in use today. These uses include heating water, heating and cooling buildings, producing electricity from solar cells, and using rain and snow from the water cycle to power electrical generators at dams.


In the following experiments, you will examine the use of solar energy in heating water, .cooking foods, concentrating sunlight, and producing electricity.
Please login or register to read the rest of this content.


Cooking involves heating food to bring about chemical changes. Sometimes foods are heated simply because the food tastes better warm than cold. In making tea, we sometimes heat water to help dissolve tea or help dissolve sugar if the tea is sweetened.


Normally the water used to make tea is heated on a range top or in a microwave oven. Using a range or microwave oven requires buying energy in the form of electricity or natural gas. Using a solar cooker does not require any energy costs because it uses a freely available renewable energy source-the sun.


A curved mirror in a bowl-like shape can focus reflected sunlight at a spot for cooking. A mirror about 1.5 meters (5 feet) across can generate a temperature of 177°C (350°F) and boil a liter of water in about fifteen minutes. In sunny areas of the world, solar cookers can be used instead of burning firewood for cooking.


Another way reflected and focused sunlight is used is to generate electricity. In southern California in 1982, a solar-thermal plant was built that can generate ten million watts of electrical power. This plant consists of 1,818 mirrored heliostats. A heliostat is a device that moves to track the sun across the sky and to reflect the sunlight at the same point. Each heliostat has twelve mirrors, and all the heliostats reflect sunlight to the same spot. The reflected light is directed at the top of a 90-meter (295-foot) tall tower. The concentrated sunlight is used to boil water and heat the steam up to 560° C (1,040 ° F). The steam turns a turbine that powers a generator to produce electricity.


One obvious disadvantage of solar-thermal plants is that they only operate when the sun is shining. The heat energy can be stored for a time by heating up a liquid or melting salt. Or the energy can be used to break water into hydrogen and oxygen. The hydrogen can then be stored and burned later to produce water and release energy.
Please login or register to read the rest of this content.


Materials


  • Three clear, clean plastic cups
  • Two small tea bags
  • Aluminum foil
  • Watch or clock
  • Measuring cup
  • Water
  • Two spoons
  • White sheet of paper
  • Plastic pan (4 inches deep and 12 inches across is a convenient size but other sizes can be used)


Download Student Worksheet & Exercises


Procedure


You will need to do this experiment on a warm, sunny day.


Use two sheets of aluminum foil and place them crosswise to completely cover the bottom and sides of a plastic pan. Try to arrange the aluminum foil so that it is smooth and curved like a bowl. The aluminum foil will help to reflect the solar energy and concentrate the light and heat toward the center of the pan. Place this aluminum covered pan outside in a warm, sunny spot where the sunlight will shine directly on it.


Add one cup of water to each of two plastic cups. The water you add to the cups should be neither hot nor cold, but about temperature. Place one cup of water in the middle of the pan. Turn the empty plastic cup upside down and place it on top of this cup. Leave this “solar cooker” undisturbed for one hour. The other cup of water should remain inside.


After one hour, gently place one tea bag in each of the water-filled cups. Wait ten minutes and then lift the tea bag out of each cup. Using a spoon, stir each cup of tea. Place both cups of tea on a white piece of paper and look down on the two cups to compare their darkness. Put your finger in each cup of tea to compare their temperatures.


Observations


Which cup of tea is a darker color? Which cup of tea is warmer?


Discussion


You should find that the water left in the “solar cooker” is darker and warmer than the water left in the shade. The darker color indicates that more tea has gone into or dissolved in the warmer water.


Other Things to Try


Place your “solar cooker” in the sun as in this experiment, but place one plastic cup upside down in the middle of the pan. Put a pat of margarine or butter on top of this cup. Will the sun melt this butter? How long does it take to melt? Repeat this activity with a piece of soft cheese and determine if the solar heater will melt the cheese. In a more carefully made solar cooker, the reflective surfaces are angled to focus a large amount of sunlight in one spot and the temperatures obtained are much higher than in your cooker.


Set one cup of water in your “solar cooker.” Set a second cup of water in the sunshine and leave both cups for one hour. Use a thermometer to check the temperature of each cup of water. Does your “solar cooker” help focus the sun’s rays and increase the temperature?


Exercises Answer the questions below:


  1. What type of solar energy are we seeing in this experiment?
    1. Solar fusion
    2. Solar voltaic
    3. Solar thermal
    4. Radiation potential
  2. Name two ways that the earth’s systems depend on the sun:
  3. What is one advantage of solar thermal energy? What is one disadvantage?
    1. Advantage:
    2. Disadvantage:

The curved shape of the magnifying lens causes light rays to bend and focus on an image. When we look through the lens, we can use it to make writing or some other object appear larger. However, the magnifying lens can also be used to make something smaller. The light from the bulb is bent and focused on the wall when the lens is held far from the lamp and close to the wall. The image is much brighter than the surroundings. This is because all the light falling on the surface of the lens is concentrated into a much smaller area.


When sunlight is concentrated by passing it through a lens, the result can be an intensely bright and not spot of light. Even a small magnifying glass can increase the intensity of the sun enough to set wood and paper on fire. We are using a light bulb rather than sunlight for this experiment because concentrated sunlight Can be very harmful to your eyes. NEVER LOOK AT A CONCENTRATED IMAGE OF THE SUN.


The United States Department of Energy’s National Renewable Energy Laboratory in Colorado uses solar energy to operate a special furnace. This high-temperature solar furnace uses a lens to concentrate sunlight. A heliostat (a device used to track the motion of the sun across the sky) is used so that the image reflected from a mirror is always directed at the same spot. The lens is used to concentrate sunlight from a mirror to an area about the size of a penny. This concentrated sunlight has the energy of 20,000 suns shining in one spot.


In less than half a second, the temperature can be raised to 1,720° C (3,128° F) which is hot enough to melt sand. This high-temperature solar furnace is being used to harden steel and to make ceramic materials that must be heated to extremely high temperatures.


Concentrated sunlight also has been used to purify polluted ground water. The ultraviolet radiation in sunlight can break down organic pollutants into carbon dioxide, water, and harmless chlorine ions. This procedure has been successfully carried out at the Lawrence Livermore Laboratory in California. In the laboratory, up to 100,000 gallons of contaminated water could be treated in one day.
Please login or register to read the rest of this content.


The solar cell you are using for this experiment is made from the element silicon. Silicon solar cells consist of two thin wafers of treated silicon that are sandwiched together. The treated silicon is made by first melting extremely pure silicon in a special furnace. Tiny amounts of other elements are added which produce either a small positive or negative electrical charge.


Usually boron is added to produce a positive charge and phosphorus is added to produce a negative charge. The addition of these other elements to pure silicon to produce an electrical charge is called doping.


After being doped, the molten silicon is allowed to cool. As it cools, the doped silicon grows into a large crystal from which very thin wafers are cut. A wafer cut from a large crystal of silicon doped with boron is called the positive or P-layer because it has a positive charge. A wafer cut from a large crystal of silicon doped with phosphorous is called the negative or N-layer.


To make a solar cell, a positive wafer (P-layer) and a negative wafer (N-layer) are sandwiched together. This causes the P-layer to develop a slight positive charge, and the N-layer to develop a slight negative charge. The solar cell is connected to a circuit by wires leading from the P-layer and the N-layer. When light falls on the surface of the cell, electrons are made to move from one layer to the other. Thus, a current of electricity flows through the circuit.


The first solar cells provided electrical power for space satellites and vehicles. Satellites and space vehicles are still big users of solar cells. Solar cells are now being used to provide electrical power for calculators and similar devices, weather stations in remote areas, oil-drilling platforms, and remote communication relay stations.


The best silicon cells convert only a small portion of the sunlight striking the cells into electricity. The efficiency of solar cells is about 15 percent. This means that 15 percent of the sunlight that strikes the cell is converted into electrical energy. The sunlight that is not converted into electricity either reflects off the surface of the cell or is converted into heat energy.
Please login or register to read the rest of this content.


Fossil fuels, which include petroleum, natural gas, and coal, supply nearly 90 percent of the energy needs of the United States and other industrialized nations. Because of their high demand, these nonrenewable energy resources are rapidly being consumed. Coal supplies are expected to last about a thousand years.


We must find other sources of energy to meet the increasing fuel demands of modern society. Important alternate sources of energy include: solar, wind, biomass, hydroelectric, geothermal, nuclear, and tidal energy.


One of the benefits of using alternate sources of energy is that many of them are “clean.” This means that they do not cause pollution. Also, many alternative energy sources are renewable energy sources. They are replaced naturally-such as plant life-or are readily available – such as the sun and wind. In addition, the use of renewable forms of energy will allow us to stretch out our current supply of fossil fuels so they will last longer.


In this chapter you will learn how biomass, or organic matter, can be an important energy source. Plants are the most important biomass energy source. Plant material can be burned directly-as with wood-or it can be converted into a fuel by other means. In the experiments that follow you will explore: how water can be heated by composting grass, how a peanut burns, and how corn syrup can be made into ethyl alcohol.
Please login or register to read the rest of this content.


A peanut is not a nut, but actually a seed. In addition to containing protein, a peanut is rich in fats and carbohydrates. Fats and carbohydrates are the major sources of energy for plants and animals.


The energy contained in the peanut actually came from the sun. Green plants absorb solar energy and use it in photosynthesis. During photosynthesis, carbon dioxide and water are combined to make glucose. Glucose is a simple sugar that is a type of carbohydrate. Oxygen gas is also made during photosynthesis.


The glucose made during photosynthesis is used by plants to make other important chemical substances needed for living and growing. Some of the chemical substances made from glucose include fats, carbohydrates (such as various sugars, starch, and cellulose), and proteins.


Photosynthesis is the way in which green plants make their food, and ultimately, all the food available on earth. All animals and nongreen plants (such as fungi and bacteria) depend on the stored energy of green plants to live. Photosynthesis is the most important way animals obtain energy from the sun.


Oil squeezed from nuts and seeds is a potential source of fuel. In some parts of the world, oil squeezed from seeds-particularly sunflower seeds-is burned as a motor fuel in some farm equipment. In the United States, some people have modified diesel cars and trucks to run on vegetable oils.


Fuels from vegetable oils are particularly attractive because, unlike fossil fuels, these fuels are renewable. They come from plants that can be grown in a reasonable amount of time.
Please login or register to read the rest of this content.


Yeast is a simple living organism that can break down sugars into ethyl alcohol (ethanol) and carbon dioxide. The process by which yeast breaks down sugars into ethyl alcohol and carbon dioxide is called fermentation.


The tiny gas bubbles rising in the liquid mixture in the bottle are carbon dioxide gas bubbles that are made during the fermentation. The balloon on the bottle expands and becomes inflated because it traps the carbon dioxide gas being produced.


The ethyl alcohol that is made during fermentation stays in the liquid mixture. When fermentation is finished, the liquid mixture usually contains about 13 percent ethyl alcohol. The rest of the liquid is mostly water.


The ethyl alcohol can be concentrated by a process called distillation. During distillation, the liquid fermentation mixture is heated to change the ethyl alcohol and some of the water into a vapor. The vapor is then cooled to change it back into a liquid. This distilled liquid contains 95 percent ethyl alcohol and 5 percent water. The remaining water can be removed by special distillation methods to give pure ethyl alcohol.


In some areas of the United States, ethyl alcohol is blended with gasoline to make a motor fuel known as gasohol. About 8 percent of the gasoline sold in the United States is gasohol.


Gasohol burns more cleanly than pure gasoline. This results in fewer pollutants being released into the air. The use of gasohol as a motor fuel is particularly important in cities that have a lot of smog.


Corn syrup is a mixture of simple and complex sugars and water. It is made by breaking down the starch in corn into sugars. The process is called digestion. In this experiment you changed the sugars in corn syrup using yeast. Much of the ethyl alcohol used to prepare gasohol is made by fermenting corn and corn sugar.


Over one billion gallons of ethyl alcohol are made each year by fermentation of sugars from grains such as corn. Ethyl alcohol is a renewable energy source when it is made by fermenting grains such as corn. This is because the grains, such as corn, are easily grown.


Please login or register to read the rest of this content.

This is a recording of a recent live teleclass I did with thousands of kids from all over the world. I’ve included it here so you can participate and learn!


Discover the world of clean, renewable energy that scientists are developing today! Explore how they are harnessing the energy of tides and waves, lean how cars can run on just sunlight and water, tour a hydroelectric power plant, visit the largest wind farms on the planet, and more! You’ll learn how streets are being designed to generate electricity, how teenagers are making jet fuel from pond scum in their garage, and how 70 million tons of salt can provide free, clean energy 24 hours a day forever! During class, you’ll learn how to bake solar cookies, magni-fry marshmallows and do the experiment with light Einstein won a Nobel prize for that is the basis of all photovoltaic energy today.


Materials:


  • One cup each: hot (not boiling), cold, and room temperature water
  • Cardboard box, shoebox size or larger.
  • Aluminum foil
  • Plastic wrap (like Saran wrap or Cling wrap)
  • Hot glue, razor, scissors, tape
  • Wooden skewers (BBQ-style)
  • Black construction paper
  • Cookie dough (your favorite kind!)
  • Chocolate, large marshmallows, & graham crackers if you want to make s’mores! If not, try just the large marshmallow.
  • Large page magnifier (also called a Fresnel lens, found at drug stores or places that also sell reading glasses, or at Amazon.com)
Please login or register to read the rest of this content.

Let’s see how much you’ve picked up with these experiments and the reading – answer as best as you can. (No peeking at the answers until you’re done!) Just relax and see what jumps to mind when you read the question. You can also print these out and jot down your answers in your science notebook.


Please login or register to read the rest of this content.

Let’s see how you did! If you didn’t get a few of these, don’t let it stress you out – it just means you need to play with more experiments in this area. We’re all works in progress, and we have our entire lifetime to puzzle together the mysteries of the universe!


Here’s printer-friendly versions of the exercises and answers for you to print out: Simply click here for printable questions and answers.


Answers:
Please login or register to read the rest of this content.


Can you use the power of the sun without using solar cells? You bet! We’re going to focus the incoming light down into a heat-absorbing box that will actually cook your food for you.


Remember from Unit 9 how we learned about photons (packets of light)?  Sunlight at the Earth’s surface is mostly in the visible and near-infrared (IR) part of the spectrum, with a small part in the near-ultraviolet (UV). The UV light has more energy than the IR, although it’s the IR that you feel as heat.


We’re going to use both to bake cookies in our homemade solar oven. There are two different designs – one uses a pizza box and the other is more like a light funnel. Which one works best for you?


  • Two large sheets of poster board (black is best)
  • Aluminum foil
  • Plastic wrap
  • Black construction paper
  • Cardboard box
  • Pizza box (clean!)
  • Tape & scissors
  • Reusable plastic baggies
  • Cookie dough (your favorite)
Please login or register to read the rest of this content.

expansionpacks_clip_image004_0000Does it really matter what angle the solar cell makes with the incoming sunlight? If so, does it matter much? When the sun moves across the sky, solar cells on a house receive different amounts of sunlight. You’re going to find out exactly how much this varies by building your own solar boat.


We’re going to use solar cells and the basic ideas from Unit 10 (Electricity & Robotics) to build a solar-powered race car.  You’ll need to find these items below.  Note – if you have trouble locating parts, check the shopping list for information on how to order it straight from us.


  • Solar motor
  • Solar cell
  • Foam block (about 6” long)
  • Alligator clip leads
  • Propeller (you can rip one off an old small personal fan or old toy, or find them at hobby stores)

Here’s what you do:


Please login or register to read the rest of this content.

solarboatSolar energy (power) refers to collecting this energy and storing it for another use, like driving a car. The sun blasts 174 x 1015 watts (which is 174,000,000,000,000,000 watts) of energy through radiation to the earth, but only 70% of that amount actually makes it to the surface. And since the surface of the earth is mostly water, both in ocean and cloud form, only a small fraction of the total amount makes it to land.


A solar cell converts sunlight straight into electricity. Most satellites are powered by large solar panel arrays in space, as sunlight is cheap and readily available out there. While solar cells seem ‘new’ and modern today, the first ones were created in the 1880s, but were a mere 1% efficient. (Today, they get as high as 35%.) A solar cell’s efficiency is a measure of how much sunlight the cell converts into electrical energy.


We’re going to use solar cells and the basic ideas from Unit 10 (Electricity & Robotics) to build a solar-powered race car.  You’ll need to find these items below.  Note – if you have trouble locating parts, check the shopping list for information on how to order it straight from us.


  • Solar cell
  • Solar motor
  • Foam block (about 6” long)
  • Alligator clip leads
  • 2 straws (optional)
  • 2 wooden skewers (optional)
  • 4 milk jug lids or film can tops
  • Set of gears, one of which fits onto your motor shaft (most solar motor kits come with a set), or rip a set out of an old toy

Here’s what you do:


Please login or register to read the rest of this content.

841958


Believe it or not, most of the electricity you use comes from moving magnets around coils of wire! Wind turbines spin big coils of wire around very powerful magnets (or very powerful magnets around big coils of wire) by capturing the flow.


Here’s how it works: when a propeller is placed in a moving fluid (like the water from your sink or wind from your hair dryer), the propeller turns. If you attach the propeller to a motor shaft, the motor will rotate, which has coils of wire and magnets inside. The faster the shaft turns, the more the magnets create an electrical current.


The electricity to power your computer, your lights, your air conditioning, your radio or whatever, comes from spinning magnets or wires! Refer to Unit 11 for more detail about how moving magnets create electricity.


We’re going to build a wind turbine that will actually give you different amounts of electricity depending on which way your propeller is facing. Ready?


You’ll need to find these items below.  Note – if you have trouble locating parts, check the shopping list for information on how to order it straight from us.


  • A digital Multimeter
  • Alligator clip leads
  • 1.5-3V DC Motor
  • 9-18VDC Motor
  • Bi-polar LED
  • Foam block (about 6” long)
  • Propeller from old toy or cheap fan, or balsa wood airplane

Here’s what you do:


Please login or register to read the rest of this content.

Do you like marshmallows cooked over a campfire? What if you don’t have a campfire, though? We’ll solve that problem by building our own food roaster – you can roast hot dogs, marshmallows, anything you want. And it’s battery-free, as this device is powered by the sun.


NOTE: This roaster is powerful enough to start fires! Use with adult supervision and a fire extinguisher handy.


If you’re roasting marshmallows, remember that they are white – the most reflective color you can get.  If you coat your marshmallows with something darker (chocolate, perhaps?), your marshmallow will absorb the incoming light instead of reflecting it.


Here’s what you need to get:


  • 7×10” page magnifier (Fresnel lens)
  • Cardboard box, about a 10” cube
  • Aluminum foil
  • Hot glue, razor, scissors, tape
  • Wooden skewers (BBQ-style)
  • Chocolate, marshmallows, & graham crackers

Here’s what you do:



Download Student Worksheet & Exercises


How does it do that? The Fresnel lens is a lot like a magnifying glass.  In Unit 9, we learned how convex lenses are thicker in the middle (you can feel it with your fingers).  A Fresnel lens (first used in the 1800s to focus the beam in a lighthouse) has lots of ridges you can feel with your fingers.  It’s basically a series of magnifying lenses stacked together in rings (like in a tree trunk) to magnify an image.


The best thing about Fresnel lenses is that they are lightweight, so they can be very large (which is why light houses used these designs). Fresnel lenses curve to keep the focus at the same point, no matter close your light source is.


The Fresnel lens in this project is focusing the incoming sunlight much more powerfully than a regular hand held magnifier. But focusing the light is only part of the story with your roaster.  The other part is how your food cooks as the light hits it.  If your food is light-colored, it’s going to cook slower than darker (or charred) food. Notice how the burnt spots on your food heat up more quickly!


Scientifically Dissecting a Marshmallow

Plants take in energy (from the sun), water, and carbon dioxide (which is carbon and oxygen) and create sugar, giving off the oxygen. In other words: carbon + water + energy = sugar


  1. In this experiment, we will reverse this equation, by roasting a marshmallow, which is mostly sugar.
  2. When you roast your marshmallow, first notice the black color. This is the carbon.
  3. Next notice the heat and light given off. These are two forms of energy.
  4. Finally, put the roasting marshmallow if a mason jar. Notice that condensation forms on the sides. This is the water.

So, by roasting the marshmallow, we showed: sugar = carbon + water + energy!


Please login or register to read the rest of this content.

In 1920’s, these were a big hit. They were originally called “Putt Putt Steam Boats”, and were fascinating toys for adults and kids alike. We’ll be making our own version that will chug along for hours. This is a classic demonstration for learning about heat, energy, and how to get your kids to take a bath.



Here’s what you need to build your own:


  • Copper tubing (1/8”-1/4” dia x 12” long)
  • Votive candle
  • Foam block
  • Scissors or razor (with adult help)
  • Bathtub

Here’s what you need to do:



Download Student Worksheet & Exercises


  1. Wrap the copper tubing 2-3 times around a thick marker. You want to create a ‘coil’ with the tubing. Do this slowly so you don’t kink the tubing. End with two 3” parallel tails. (This is easier if you start in the middle of the tubing and work outwards in both directions.)
  2. Stick each tail through a block of foam. Bend the wires to they run along the length of the bottom of the boat, slightly pointed upwards. (You can also use a plastic bottle cut in half.)
  3. Position a votive candle on the topside of the boat and angle the coil so it sits right where the flame will be.
  4. To start your boat, fill the bathtub with water. While your tub fills, hold the tubing in the running water and completely fill the coil with water.
  5. Have your adult helper light the candle. In a moment, you should hear the ‘putt putt’ sounds of the boat working!
  6. Troubleshooting: if your boat doesn’t work, it could be a few things:
    1. The tubing has an air bubble. In this case, suck on one of the ends like a straw to draw in more water. Heating an air bubble will not make the boat move – it needs to be completely filled with water.
    2. Your coil is not hot enough. You need the water to turn into steam, and in order for this to happen, you have to heat the coil as hot as you can. Move the coil into a better position to get heat from the flame.
    3. The exhaust pipes are angled down. You want the stem to move up and out of your pipes, not get sucked back in. Adjust the exit tubing tails so they point slightly upwards.

How Do They Work? Your steam boat uses a votive candle as a heat source to heat the water inside the copper tubing (which is your boiling chamber). When the water is heated to steam, the steam pushes out the tube at the back with a small burst of energy, which pushes the boat forward.


Since your chamber is small, you only get a short ‘puff’ of energy. After the steam zips out, it creates a low pressure where it once was inside the tube, and this draws in fresh, cool water from the tub. The candle then heats this new water until steam and POP! it goes out the back, which in turn draws in more cool water to be heated… and on it goes. The ‘clicking’ or ‘putt putt’ noise you hear is the steam shooting out the back. This is go on until you either run out of water or heat.


Bonus! Here’s a video from a member that colored the water inside the pipe so they could see when it got pushed out! Note that the boat usually runs as fast as the first video on this page. The boats here are getting warmed up, ready to go, so they only do one or two puffs before they really start up.



Exercises Answer the questions below:


  1. Name three sources of renewable or alternative energy:
  2. Why is it important to look for renewable sources of energy?
  3. What is one example of a fossil fuel?
Please login or register to read the rest of this content.

This is the kind of energy most people think of when you mention ‘alternative energy’, and for good reason! Without the sun, none of anything you see around you could be here. Plants have known forever how to take the energy and turn it into usable stuff… so why can’t we?


The truth is that we can. While normally it takes factories the size of a city block to make a silicon solar cell, we’ll be making a copper solar cell after a quick trip to the hardware store. We’re going to modify the copper into a form that will allow it to react with sunlight the same way silicon does. The image shown here is the type of copper we’re going to make on the stovetop.


This solar cell is a real battery, and you’ll find that even in a dark room, you’ll be able to measure a tiny amount of current. However, even in bright sunlight, you’d need 80 million of these to light a regular incandescent bulb.


Please login or register to read the rest of this content.

xtal3This project is for advanced students. A crystal radio is among the simplest of radio receivers – there’s no battery or power source, and nearly no moving parts. The source of power comes directly from the radio waves themselves.


The crystal radio turns the radio signal directly into a signal that the human ear can detect. Your crystal radio detects in the AM band that have been traveling from stations (transmitters) thousands of miles away. After working with the electromagnetic spectrum in Unit 9 where we played with frequency and wavelengths of light, you’ll find that you’ve got all the basics for picking up AM radio stations using simple equipment from an electronics store.


The radio is made up of a tuning coil (magnet wire wrapped around a toilet paper tube), a detector (germanium diode) and crystal earphones, and an antenna wire.


One of the biggest challenges with detecting low-power radio waves is that there is no amplifier on the radio to boost the signal strength. You’ll soon figure out that you need to find the quietest spot in your house away from any transmitters (and loud noises) that might interfere with the reception when you build one of these.


One of things you’ll have is to figure out the best antenna length to produce the clearest, strongest radio signal in your crystal radio. I’m going to walk you through making three different crystal radio designs.


Materials:


  • Toilet paper tube
  • Magnet wire
  • Germanium diode: 1N34A
  • 4.7k-ohm resistor
  • Alligator clip test leads
  • 100’ stranded insulated wire (for the antenna)
  • Scrap of cardboard
  • Brass fasteners (3-4)
  • Telephone handset or get a crystal earphone

Here’s what you do:


Please login or register to read the rest of this content.

This project is for advanced students.This is one of the coolest applications of renewable energy to come about in recent years. BEAM stands for Biology, Electronics, Aesthetics, and Mechanics. It basically refers to a class of robots that instead of having complicated brains, rely on nervous-system type of sensors to interact with their world.


Some BEAM robots skitter, dance, flash, jump, roll, or walk, and most are solar powered. The result is a fast responding robot made of old cell phone parts that can fit inside your hand. We’ll be making a few different types so you can get a good handle on this type of programming-free, battery-free robotics.


Most BEAM robots use the same solar ‘engine’. The solar cell will convert sunlight into electricity, which will then be stored in our capacitors (think ‘electricity tanks’) until a certain threshold is reached… when the tanks are full, the robot begins to move. This means that you can leave them out all day, and they will sit and collect energy, then turn on by themselves until they run out of juice, then turn off, sit and recharge until they have enough energy to go again… and off they go!


Let’s walk through how to make a BEAM robot. Once you’ve got the hang of it, make a second solar engine from the rest of your parts and add any kind of body you want!


Please login or register to read the rest of this content.

This is the simplest robot you can make… out of old parts from around the house. While this little robot doesn’t use energy from the sun or wind, we’ve placed it here with other alternative energy projects because the parts come from the trash bin.


This project is an extension of the Jigglebot robot from Unit 10.


Please login or register to read the rest of this content.

This project is for advanced students.This Stirling Engine project is a very advanced project that requires skill, patience, and troubleshooting persistence in order to work right.  Find yourself a seasoned Do-It-Yourself type of adult (someone who loves to fix things or tinker in the garage) before you start working on this project,  or you’ll go crazy with nit-picky things that will keep the engine from operating correctly.  This makes an excellent project for a weekend.


Developed in 1810s, this engine was widely used because it was quiet and could use almost anything as a heat source. This kind of heat engine squishes and expands air to do mechanical work. There’s a heat source (the candle) that adds energy to your system, and the result is your shaft spins (CD).


This engine converts the expansion and compression of gases into something that moves (the piston) and rotates (the crankshaft). Your car engine uses internal combustion to generate the expansion and compression cycles, whereas this heat engine has an external heat source.


This experiment is great for chemistry students learning about Charles’s Law, which is also known as the Law of Volumes, which describes how gases tend to expand when they are heated and can be mathematically written like this:



where V = volume, and T = temperature. So as temperature increases, volume also increases. In the experiment you’re about to do, you will see how heating the air causes the diaphragm to expand which turns the crank.


Please login or register to read the rest of this content.

41wpr5+y2qLThis project is for advanced students. We’re going to build a car that runs entirely on sunlight and water.  Use energy from the sun, we’ll first use a solar cell to convert sunlight into electricity.


Then we’ll use that electricity to split the water molecule (H2O) into hydrogen and oxygen atoms and store them in separate tanks.


Lastly, we’ll flip the system around to allow the hydrogen and oxygen gases to mix, which will produce the power to run the car and create an exhaust product that’s just plain water.


How does that sound?
Please login or register to read the rest of this content.


Note: Brian Cox has created a BEAM Bot kit as an alternative BEAM project.

Brian's BEAM BOT is modeled after small BEAM projects where parts are soldered to each other, but such projects can be difficult to solder.

BEAM Bot uses a standard Printed Circuit Board (PCB) as the frame thus making it easier to assemble.

You can order Brian's BEAM Bot Kit here: fvresearch.com/product/beam-bot .

Click here for Brian's BEAM Bot instructional video (which can be found under Unit 25).

This project is for advanced students.This is one of the coolest applications of renewable energy to come about in recent years. BEAM stands for Biology, Electronics, Aesthetics, and Mechanics. It basically refers to a class of robots that instead of having complicated brains, rely on nervous-system type of sensors to interact with their world.

Some BEAM robots skitter, dance, flash, jump, roll, or walk, and most are solar powered. The result is a fast responding robot made of old cell phone parts that can fit inside your hand. We'll be making a few different types so you can get a good handle on this type of programming-free, battery-free robotics.

Please login or register to read the rest of this content.


Note: Brian Cox has created a BEAM Bot kit as an alternative to the Trimet project.

Brian's BEAM BOT is modeled after small BEAM projects where parts are soldered to each other, but such projects can be difficult to solder.

BEAM Bot uses a standard Printed Circuit Board (PCB) as the frame thus making it easier to assemble.

You can order Brian's BEAM Bot Kit here: fvresearch.com/product/beam-bot .

Click here for Brian's BEAM Bot instructional video (which can be found under Unit 25).

This project is for advanced students. This is one of the coolest applications of renewable energy to come about in recent years. BEAM stands for Biology, Electronics, Aesthetics, and Mechanics. It basically refers to a class of robots that instead of having complicated brains, rely on nervous-system type of sensors to interact with their world.

Some BEAM robots skitter, dance, flash, jump, roll, or walk, and most are solar powered. The result is a fast responding robot made of old cell phone parts that can fit inside your hand. We'll be making a few different types so you can get a good handle on this type of programming-free, battery-free robotics.

You'll need to get the Trimet Kit from Solarbotics. It has everything you need except the tools for the job (soldering iron, pliers, wire strippers, razor) and paperclips.

Here's what you do:

Please login or register to read the rest of this content.


This project is for advanced students.This is one of the coolest applications of renewable energy to come about in recent years. BEAM stands for Biology, Electronics, Aesthetics, and Mechanics. It basically refers to a class of robots that instead of having complicated brains, rely on nervous-system type of sensors to interact with their world.

Some BEAM robots skitter, dance, flash, jump, roll, or walk, and most are solar powered. The result is a fast responding robot made of old cell phone parts that can fit inside your hand. We'll be making a few different types so you can get a good handle on this type of programming-free, battery-free robotics.

Please login or register to read the rest of this content.


What’s all the hype about “Alternative Energy”? Are there really better ways of making the same energy for less? Absolutely! One of the biggest challenges we have right now is how to extract the energy that’s already around us. For example, the amount of energy in a gallon of water could power all of the USA for a year, if we only knew how to harness it safely.


There are many different forms of energy floating around you right now: solar batteries capture the heat and light energy from the sun and store it for later use; geothermal energy uses the difference in temperature to do work; the energy from rushing winds and rivers can be used to turn a motor; and the energy inside light waves themselves can be tapped into so you can hear radio signals using a battery-free radio.


We’re going to cover all this and more, including how to get energy from the water molecule to power a vehicle AND how to build robots that use only solar power (and never need a battery recharge!) Are you ready? Then let’s start with this video:


Please login or register to read the rest of this content.