Now let’s take a look at a couple of sample calculations so you really understand how to do this…


Please login or register to read the rest of this content.

There are two main equations for power in the field of current electricity:


P = I2 R


P = V2/R


where P = power (watts), V = voltage (volts), R = resistance (ohms), I = current (amps)


Please login or register to read the rest of this content.

I do have a LOT of hair on my head. Here’s a neat way to figure out how much current I use every morning I fire up the hair dryer:


Please login or register to read the rest of this content.

Do you like toast? Here’s how much current it takes to transform ordinary bread into crunchy toast:


Please login or register to read the rest of this content.

What’s the difference between a 60W at a 120W bulb? Let’s take a look…


Please login or register to read the rest of this content.

This is a recording of a recent live teleclass I did with thousands of kids from all over the world. I’ve included it here so you can participate and learn, too!


You’ll discover how to boil water at room temperature, heat up ice to freeze it, make a fire water balloon, and build a real working steam boat as you learn about heat energy. You’ll also learn about thermal energy, heat capacity, and the laws of thermodynamics.


Materials:


  • cup of ice water
  • cup of room temperature water
  • cup of hot water (not scalding or boiling!)
  • tea light candle and lighter (with adult help)
  • balloon (not inflated)
  • syringe (without the needle)
  • block of foam
  • copper tubing (¼” diameter and 12” long)
  • bathtub or sink
  • scissors or razor
  • fat marker (to be used to wrap things around, not for writing)
Please login or register to read the rest of this content.

Imagine you have two metal plates that are parallel to each other, and one is positively charged ad the other is negatively charged. The direction of the electric field created by these two charged places is from the positive toward the negative plate. (Imagine placing a positive test charge int he field… which way would it go? Away from the positive plate and toward the negative plate… so that’s the direction of the electric field.) Now imagine connecting the two plates with a metal wire. What do you think would happen?


Please login or register to read the rest of this content.

An electrical circuit is like a NASCAR raceway.  The electrons (racecars) zip around the race loop (wire circuit) superfast to make stuff happen. Although you can’t see the electrons zipping around the circuit, you can see the effects: lighting up LEDs, sounding buzzers, clicking relays, etc.


There are many different electrical components that make the electrons react in different ways, such as resistors (limit current), capacitors (collect a charge), transistors (gate for electrons), relays (electricity itself activates a switch), diodes (one-way street for electrons), solenoids (electrical magnet), switches (stoplight for electrons), and more.  We’re going to use a combination diode-light-bulb (LED), buzzers, and motors in our circuits right now.


A CIRCUIT looks like a CIRCLE.  When you connect the batteries to the LED with wire and make a circle, the LED lights up.  If you break open the circle, electricity (current) doesn’t flow and the LED turns dark.


LED stands for “Light Emitting Diode”.  Diodes are one-way streets for electricity – they allow electrons to flow one way but not the other.


Remember when you scuffed along the carpet?  You gathered up an electric charge in your body.  That charge was static until you zapped someone else.  The movement of electric charge is called electric current, and is measured in amperes (A). When electric current passes through a material, it does it by electrical conduction. There are different kinds of conduction, such as metallic conduction, where electrons flow through a conductor (like metal) and electrolysis, where charged atoms (called ions) flow through liquids.


Please login or register to read the rest of this content.

Click here to go to your next lesson on Detecting Current!

Galvanometers are coils of wire connected to a battery. When current flows through the wire, it creates a magnetic field. Since the wire is bundled up, it multiplies this electromagnetic effect to create a simple electromagnet that you can detect with your compass.
Please login or register to read the rest of this content.


switch-zoomMake yourself a grab bag of fun things to test: copper pieces (nails or pipe pieces), zinc washers, pipe cleaners, Mylar, aluminum foil, pennies, nickels, keys, film canisters, paper clips, load stones (magnetic rock), other rocks, and just about anything else in the back of your desk drawer.


Certain materials conduct electricity better than others. Silver, for example, is one of the best electrical conductors on the planet, followed closely by copper and gold. Most scientists use gold contacts because, unlike silver and copper, gold does not tarnish (oxidize) as easily. Gold is a soft metal and wears away much more easily than others, but since most circuits are built for the short term (less than 50 years of use), the loss of material is unnoticeable.
Please login or register to read the rest of this content.


Click here to go to your next lesson on requirements for a circuit!

You need two important things for an electric circuit: first you need a closed conductive path that goes from the positive to the negative terminal of the battery. When I teach this activity to kids, there’s always a couple that try to light up the LED just using the LED and wires (they forget about the battery completely!) You always need a power source in the circuit in order for charges to flow. The charges only flow through something that conducts electricity. Sometimes kids forget about the conductive part, and just try to touch the plastic coating on the wires to the LED and are frustrated when it doesn’t work right. It must be a closed conductive loop.


Please login or register to read the rest of this content.

This is a recording of a recent live robotics teleclass I did with thousands of kids from all over the world. I’ve included it here so you can participate and learn, too!


We’ll cover topics in electricity, magnetism, electrical charges, robot construction, sensors and more by building several projects together. For now, just watch the video and if you already have the materials to build the projects, feel free to do it along with me. If not, don’t worry… we’ll get to these projects soon in the course.


Please login or register to read the rest of this content.

If this next part is too confusing, just skip over it. I did want to let you know (for those of you who have spotted it already) that there’s a big problem with the positive test charge model we’ve been using. Well, it’s kind of a problem, but not really a big one once you get used to the idea.


Please login or register to read the rest of this content.

In electric circuits, the charge carriers are electrons, which are already inside the wire itself. The battery doesn’t add extra electrons to the circuit to make it go… the electrons inside the wires are already there. The battery provides an electric potential difference that signals the electrons to start moving, and this signal travels at the speed of light (or close to it), and then the electrons start moving (quite a bit slower than the speed of light). This means that electrons don’t have to start at the battery and them go all the way to the light before the light bulb lights up, because the electrons inside the filament itself are the ones that start glowing when they get the signal to start moving.


Please login or register to read the rest of this content.

knifeswitchWhen you turn on a switch, it’s difficult to really see what’s going on… which is why we make our own from paperclips, brass fasteners, and index cards.


Kids can see the circuit on both sides of the card, so it makes sense why it works (especially after doing ‘Conductivity Testers’).


SPST stands for Single Pole, Single Throw, which means that the switch turns on only one circuit at a time. This is a great switch for one of the robots we’ll be making soon, as it only needs one motor to turn on and off.
Please login or register to read the rest of this content.


 Click here to go to your next lesson on Electric Circuit Loads!

Imagine you have two magnets. Glue one magnet on an imaginary record player (or a ‘lazy susan’ turntable) and hold the other magnet in your hand. What happens when you bring your hand close to the turntable magnet and bring the north sides together?


The magnet should repel and move, and since it’s on a turntable, it will circle out of the way. Now flip your hand over so you have the south facing the turntable. Notice how the turntable magnet is attracted to yours and rotates toward your hand. Just as it reaches your hand, flip it again to reveal the north side. Now the glued turntable magnet pushes away into another circle as you flip your magnet over again to attract it back to you. Imagine if you could time this well enough to get the turntable magnet to make a complete circle over and over again… that’s how a motor works!


After you get the buzzer and the light or LED to work, try spinning a DC motor:


Please login or register to read the rest of this content.

We’re going to define power in an electric circuit as the rate tat electrical energy is used by the load (or supplied by the source). Power is then equal to the work done by the charge per unit time, or said another way, the rate that the charge changes its energy (whether it’s lost or gained).


Please login or register to read the rest of this content.

lot of people don’t understand electricity, but they use it all the time. Normally I’d agree with this approach: know enough so you can make good use of it, and for the most part, I’ve done that in this course. However, because this is such an advanced course specifically in electricity, I want to make sure we’ve busted the main myths out there around electricity, Over the years, I’ve heard many different ideas folks have about electricity, and at some level, it’s really not their fault for these misconceptions because they are still so popular.


It’s important as a scientist that you question not only what you know but how you know what you know. This will lead you to the truth about how things work, and not just what most people think the reason is (which isn’t usually correct). Here are a couple of mainstream ones that still persist today:
Please login or register to read the rest of this content.


Electric fields are like gravitational fields in a couple of important ways. They both have forces that act at a distance. Remember with the gravitational field, in order to walk up stairs, you are doing work (exerting a force) against the pull of gravity. Your body naturally wants to be at the ground level, and it takes work to get it up a flight of stairs. You move from a lower potential energy to a higher potential energy as you walk up those stairs. When you walk up the stairs, you are adding gravitational potential energy to your body. And it doesn't matter how wacky the staircase is... it can have curves, dips, switchbacks, and more... but it's only the beginning and end points that we care about when calculating the gravitational potential energy.Electric Potential Difference.

Please login or register to read the rest of this content.


Now before you roll your eyes, let me explain that this is how we specify the electric potential energy. We want it to be based only on location, so it’s defined this way:


Please login or register to read the rest of this content.

Magnesium is one of the most common elements in the Earth’s crust. This alkaline earth metal is silvery white, and soft. As you perform this lab, think about why magnesium is used in emergency flares and fireworks. Farmers use it in fertilizers, pharmacists use it in laxatives and antacids, and engineers mix it with aluminum to create the BMW N52 6-cylinder magnesium engine block. Photographers used to use magnesium powder in the camera’s flash before xenon bulbs were available.


Most folks, however, equate magnesium with a burning white flame. Magnesium fires burn too hot to be extinguished using water, so most firefighters use sand or graphite.


We’re going to learn how to (safely) ignite a piece of magnesium in the first experiment, and next how to get energy from it by using it in a battery in the second experiment. Are you ready?


Please login or register to read the rest of this content.

Click here to go to your next lesson on how to make a fruit battery.

This experiment shows how a battery works using electrochemistry. The copper electrons are chemically reacting with the lemon juice, which is a weak acid, to form copper ions (cathode, or positive electrode) and bubbles of hydrogen.


These copper ions interact with the zinc electrode (negative electrode, or anode) to form zinc ions. The difference in electrical charge (potential) on these two plates causes a voltage.


Materials:


  • one zinc and copper strip
  • two alligator wires
  • digital multimeter
  • one fresh large lemon or other fruit
Please login or register to read the rest of this content.

Click here to go to your next lesson on learning how a battery can store energy.

Why is one end designated as the “high potential” end? If you watch a positive charge move from the negative terminal to the positive terminal, it requires work to move this charge (the positive charge experiences a repulsive force as it moves closer to the positive terminal), which increases the potential energy of the charge because you’re moving a positive charge against the electric field.
Please login or register to read the rest of this content.


Moving the positive charge from the positive to negative terminal would be with the electric field, so the charge would experience a decrease in potential energy as it moved through an external circuit. (You’ve noticed that we’re only talking about positive test charges here in order to determine which end of the battery is high and which end is low.) This is a really neat experiment on how to make your own solar battery. If you don’t have time or copper flashing for this one, you can just skip doing it but be sure to watch it just for fun…
Please login or register to read the rest of this content.


Using ocean water (or make your own with salt and water), you can generate enough power to light up your LEDs, sound your buzzers, and turn a motor shaft. We’ll be testing out a number of different materials such as copper, aluminum, brass, iron, silver, zinc, and graphite to find out which works best for your solution.


This project builds on the fruit battery we made in Unit 8. This experiment is for advanced students.


The basic idea of electrochemistry is that charged atoms (ions) can be electrically directed from one place to the other. If we have a glass of water and dump in a handful of salt, the NaCl (salt) molecule dissociates into the ions Na+ and Cl-.


When we plunk in one positive electrode and one negative electrode and crank up the power, we find that opposites attract: Na+ zooms over to the negative electrode and Cl- zips over to the positive. The ions are attracted (directed) to the opposite electrode and there is current in the solution.


Please login or register to read the rest of this content.

Have you ever wondered what college will be like? Here’s a video from a professor at MIT on electrostatics, specifically the electric field and the electric potential. It’s a full class lecture, so don’t worry if you get a little lost with the calculations on the chalkboard. Just sit back and enjoy watching learning from someone other than me (Aurora) so you get more than one perspective on the subject.




Click here to go to your next lesson on voltage.

Electric potential is defined as the amount of potential energy per charge. Watch this next video and see if you can quickly determine the work done on the charge and where the electric potential is the greatest…


Please login or register to read the rest of this content.

This problem is a fun one to solve! Let’s find out how much static charge build up there is on a balloon rising into the atmosphere.


Please login or register to read the rest of this content.

Imagine you have a positive test charge in an electric field and you move it from one point to another. When you move it, the charge against the electric field, you have to do work on it using an external force, like your hand pushing it along the path. The work done by your hand on the charge will increase the potential energy and also cause a difference in the electric potential between the start and finish locations. If the electric potential difference between the start and finish is 10 volts, then one Coulomb of charge will increase by 10 Joules of potential energy when you push the charge from start to finish. This is what voltage is.


Please login or register to read the rest of this content.

Now Let’s take a look at the nucleus of a gold atom, specifically at the potential on the surface. There are 79 protons inside…


Please login or register to read the rest of this content.

Now imagine a simple circuit that uses a light bulb (or LED) and a battery. The battery provides the energy to do work on the charges to move it from the negative to the positive terminal. Once the charge is at the high potential (the plus side of the battery), it’s like taking a chair lift to the top of a mountain… it is now ready to ski down the mountain with little to no effort. So once the charge is at the high potential terminal, it naturally flows through the wires to the low potential terminal. The ski lift is doing work to get you up the mountain against the nature of the gravitational field the same way the battery is doing work on the electric charge moving it from a low to high potential.
Please login or register to read the rest of this content.


Let’s look at two protons inside the nucleus of a uranium atom…


Please login or register to read the rest of this content.

Now you understand how scuffing along a carpet in socks builds up electrons on the body, and how this negative electric charge affects other things (like your cat) when you reach a finger out to touch them. You also know how opposite charges attract and like charges repel, and the difference between balanced charges and unbalanced charges.


We’re going to dive into studying force fields. You may wonder what force fields have to do with a serious examination of physics like the one in this lesson. You probably consider force fields to be something you might hear about in a science fiction scene such as…


Please login or register to read the rest of this content.

Overall, Maxwell’s four equations describe the fundamentals of electricity and magnetism. However, one look at these mathematical equations can make a high school student run screaming from the room, so we’re not going to dive into the sophisticated mathematics of the equations themselves, but rather what they really tell us about the relationships between the electric and magnetic fields.


Please login or register to read the rest of this content.

A field changes the nature of the space surround the thing producing the field. A magnet produces a magnetic field which changes the nature of the space around it so that other magnets and magnetic objects are now influenced by it. Some magnetic fields (and other fields) are stronger than others, and now we’re going to learn how to measure the field strength of electric fields.


The electric field is a vector (it has magnitude and direction), and this is how you do it:


Please login or register to read the rest of this content.

Michael Faraday was the first to come up with the idea about electric fields. He thought of the space around a charged object as being filled with lines of force. He was trying to figure out a pattern that represented what the electric field looked like by imagining the electric field as a bubble around a charged object and how it would interact with another object that enters into that bubble. This is a little different than imagining a charge interacting with a charge. There’s a field interaction between the two charges. Every charge creates a bubble around it that in turn, affects the space within that bubble.


Please login or register to read the rest of this content.

Have you wrapped your mind around static electricity yet? You should understand by now how scuffing along a carpet in socks builds up electrons, which eventually jump off in a flurry known as a spark. And you also probably know a bit about magnets and how magnets have north and south poles AND a magnetic field (more on this later). Did you also know that electrical charges have an electrical field, just like magnets do?


It’s easy to visualize a magnetic field, because you’ve seen the iron filings line up from pole to pole. But did you know that you can do a similar experiment with electric fields?


Here’s what you need:


  • dried dill (spice)
  • vegetable or mineral oil
  • 2 alligator wires
  • static electricity source (watch video first!)
Please login or register to read the rest of this content.

Click here to go to next lesson on Weird Shapes and Field Lines.

It’s easy to see how the field lines go from a point charge, but what about around an oddly shaped object (like most objects are)? Here’s how you draw them:


Please login or register to read the rest of this content.

British physicist Michael Faraday, famous for his many contributions to science including electrochemistry and electromagnetism.
British physicist Michael Faraday, famous for his many contributions to science including electrochemistry and electromagnetism.

Michael Faraday also discovered how you can have an electric field inside a charged conductor. Image you have a room within a room, and the inner room is made completely of metal. You can sit in the inner room with a static charge detector (like an electroscope), and when you charge the surfaces of both rooms, you’ll see sparks flying between the two rooms, but it’s peacefully (electrically speaking) quiet in the inner room. No charge is detected inside the inner room with your electroscope. You can have a bolt of lightning strike the inner room, but it still doesn’t register a charge inside the inner room. Why is that?


The inner room I’ve just described is called a “Faraday Cage”, and it’s often seen at science and magic shows because it absolutely defies common sense, until you really think about it. The inner room is shielding you from electric fields. Any closed conducting surface can be a Faraday cage. By closed, I mean electrically speaking. The cage can be a cage made of bars or chicken wire, but it’s still got to be electrically closed.  During the experiment, you can even run your hands on the inside of the room and still not get a shock from the sparks flying around between the rooms!


Please login or register to read the rest of this content.

You’re already familiar with two different kinds of potential energy: elastic (like the energy stored in a rubber band) and gravitational (the energy stored in height). Now let’s take a look at electrical potential energy stored in an electric field:


Please login or register to read the rest of this content.

Ever wonder where the “volt” comes from? We’re going to look at this more in the next section on DC current, but here’s a snapshot overview of electric potential:


Please login or register to read the rest of this content.

If you have a Fun Fly Stick, then pull it out and watch the video below. If not, don’t worry – you can do most of these experiments with a charged balloon (one that you’ve rubbed on your hair). Let’ play with a more static electricity experiments, including making things move, roll, spin, chime, light up, wiggle and more using  static electricity!


Please login or register to read the rest of this content.

Click here to go to next lesson on Alien Detector.

fet1This simple FET circuit is really an electronic version of the electroscope. This “Alien Detector” is a super-sensitive static charge detector made from a few electronics parts. I originally made a few of these and placed them in soap boxes and nailed the lids shut and asked kids how they worked. (I did place a on/off switch poking through the box along with the LED so they would have ‘some’ control over the experiment.)


This detector is so sensitive that you can go around your house and find pockets of static charge… even from your own footprints! This is an advanced project for advanced students.


You will need to get:


  • 9V battery clip (and a 9V battery)
  • MPF 102  (buy 2 – one for back up)
  • LED (any regular LED works fine)
Please login or register to read the rest of this content.

Click here to go to next lesson on Lightning.

What causes lightning, and how can we protect ourselves from strikes? In many textbooks, you’ll read about how clouds become electrically charged through friction in the moist air, but the truth is, scientists still don’t fully understand how and why lightning happens the way it does. But here’s what we do know: lightning happens when the positive and negative charges in a cloud become polarized. That is, the (extra) positive charges move to the top of the cloud and the (extra) negative charges move to the bottom of the cloud, usually by friction of the water vapor molecules in the cloud.


As the water molecules rise, electrons are stripped off and add to the charge of the cloud. The cloud can become ever more polarized if the rising water vapor freezes. The frozen particles clump together and take on a negative charge inside, positive charge on the outside, which rips the clumps apart to further polarize the cloud. The more polarized the cloud is, the more its electric field affects the space around it. The electrons on the surface of the Earth underneath the cloud are repelled by the bottom of the cloud, which creates a positive charge on the surface under the cloud. Trees. houses, cars, and people take on a positive charge as the cloud passes by.  Now we’re set up for a lightning strike.


Please login or register to read the rest of this content.

The way charges attract or repel each other can be described as a force. A charge can exert a push or pull on another charge depending on if the charges are positive or negative. How much force they exert can be figured out using Coulomb’s Law of Electric Force, which is:



where  C = 8.99 x 109 Nm2/C2


Please login or register to read the rest of this content.

You can’t do an experiment on the planet without gravity playing some part of it (albeit sometimes so small you can ignore gravitational effects) since we’re in the Earth’s gravitational field. The electrical forces will add another force vector to our FBD that can be used when we look at how objects move in reaction to the forces.


Let’s take a look at how this works:


Please login or register to read the rest of this content.

How much charge do you think is inside a penny? What would happen if you could separate the positive and negative charges? How much force would each bundle of charge experience? Here’s how you find out:


Please login or register to read the rest of this content.

As a physics student, I wondered how much of a pulling force was between the nucleus of an atom and the electrons. Let’s look at the simplest atom (hydrogen) and find the attractive force between the proton and the electron:


Please login or register to read the rest of this content.

Wasn’t that incredible how much force was present just between the two? After I figured that out, I wanted to know how much “push” was present between two protons in the nucleus. If you think about it, there’s really no reason for the protons to stick together inside the nucleus because they are all positively charged. Let’s take a look at the iron atom as we figure this out…


Please login or register to read the rest of this content.

The Triboelectric Effect is a type of electrification that happens when you rub two different materials together and then separate them. Often, one will take on a positive charge and the other a negative. But how do you know which is going to be which?


Please login or register to read the rest of this content.

Click here to go to next lesson on Electrostatic Motors.

You can use the idea that like charges repel (like two electrons) and opposites attract to move stuff around, stick to walls, float, spin, and roll. Make sure you do this experiment first.


I’ve got two different videos that use positive and negative charges to make things rotate, the first of which is more of a demonstration (unless you happen to have a 50,000 Volt electrostatic generator on hand), and the second is a homemade version on a smaller scale.


Did you know that you can make a motor turn using static electricity? Here’s how:


Please login or register to read the rest of this content.

Click here to go to next lesson on Coulomb’s Law.

Induction is another way to create a charge in an object. You can charge an object by induction without even touching it. I’ve got a couple of really neat experiments that will show you how this works, but here’s the basic idea: when you have two metal objects, like two soda cans, standing upright on a foam slab and just touching each other (so they are insulated from the table but in contact with each other), you can bring a charged balloon close to one of them and see a really interesting effect: the can closest to the charged balloon (which has a negative charge) will take on a positive charge, and the soda can furthest from the balloon will take on a negative charge. And when you separate the two cans, the charges on each will be evenly distributed over the surface of each can and remain polarized (the further can keeps its negative charge and the closer can keeps its positive charge). That’s charging by induction!


Please login or register to read the rest of this content.

When high energy radiation strikes the Earth from space, it’s called cosmic rays. To be accurate, a cosmic ray is not like a ray of sunshine, but rather is a super-fast particle slinging through space. Think of throwing a grain of sand at a 100 mph… and that’s what we call a ‘cosmic ray’. Build your own electroscope with this video!


Please login or register to read the rest of this content.

Jupiter not only has the biggest lightning bolts we’ve ever detected, it also shocks its moons with a charge of 3 million amps every time they pass through certain hotspots. Some of these bolts are cause by the friction of fast-moving clouds. Today you get to make your own sparks and simulate Jupiter’s turbulent storms.


Electrons are too small for us to see with our eyes, but there are other ways to detect something’s going on. The proton has a positive charge, and the electron has a negative charge. Like charges repel and opposite charges attract.


Materials


  • Foam plate
  • Foam cup
  • Wool cloth or sweater
  • Plastic baggie
  • Aluminum pie pan
  • Aluminum foil
  • Film canister or M&M container
  • Nail (needs to be a little longer than the film canister)
  • Hot glue gun or tape
  • Water
Please login or register to read the rest of this content.

Click here to go to next lesson on Easy Photoelectric Effect Experiment

Photoelectric EffectEinstein received a Nobel Prize for figuring out what happens when you shine blue light on a sheet of metal.  When he aimed a blue light on a metal plate, electrons shot off the surface. (Metals have electrons which are free to move around, which is why metals are electrically conductive. More on this in Unit 10).


When Einstein aimed a red light at the metal sheet, nothing happened.  Even when he cranked the intensity (brightness) of the red light, still nothing happened.  So it was the energy of the light (wavelength), not the number of photons (intensity) that made the electrons eject from the plate. This is called the ‘photoelectric effect’. Can you imagine what happens if we aim a UV light (which has even more energy than blue light) at the plate?


This photoelectric effect is used by all sorts of things today, including solar cells, electronic components, older types of television screens, video camera detectors, and night-vision goggles.


This photoelectric effect also causes the outer shell of orbiting spacecraft to develop an electric charge, which can wreck havoc on its internal computer systems.


A surprising find was back in the 1960s, when scientists discovered that moon dust levitated through the photoelectric effect. Sunlight hit the lunar dust, which became (slightly) electrically charged, and the dust would then lift up off the surface in thin, thread-like fountains of particles up ¾ of a mile high.


Please login or register to read the rest of this content.

Click here to go to next lesson on Charging by Induction and Conduction.

Ygou can also charge objects by conduction. You’ve actually already done with without really thinking about it. The foil on the wire coat hanger in the electroscope was being charged by conduction. When you touch a charged balloon to the foil ball on the electroscope, that’s a charge by conduction. If you were to get the charged balloon really close but not touching the foil ball, that would be charging by induction. (See the difference?) Charging by conduction just means that you need to touch the electrically neutral object to the one that is charged to transfer the charge. It’s charge by contact.


With charge by induction, it’s the forces due to likes repelling and opposites attracting that cause the charge in objects. With conduction, it’s the actual movement of electrons to the object that make the charge in the object. This is obvious if you think about touching two soda cans together, since they are both made out of a material that allows electrons to move about freely within the material (on the surface of the object). But what about two insulators, like two foam plates? What happens then?


Please login or register to read the rest of this content.

This experiment is just for advanced students. If you guessed that this has to do with electricity and chemistry, you’re right! But you might wonder how they work together. Back in 1800, William Nicholson and Johann Ritter were the first ones to split water into hydrogen and oxygen using electrolysis. (Soon afterward, Ritter went on to figure out electroplating.) They added energy in the form of an electric current into a cup of water and captured the bubbles forming into two separate cups, one for hydrogen and other for oxygen.


This experiment is not an easy one, so feel free to skip it if you need to. You don’t need to do this to get the concepts of this lesson but it’s such a neat and classical experiment (my students love it) so you can give it a try if you want to. The reason I like this is because what you are really doing in this experiment is ripping molecules apart and then later crashing them back together.


Have fun and please follow the directions carefully. This could be dangerous if you’re not careful. The image shown here is using graphite from two pencils sharpened on both ends, but the instructions below use wire.  Feel free to try both to see which types of electrodes provide the best results.


Please login or register to read the rest of this content.

Click here to go to next lesson on Molecules and Atoms.

Oxygen Atomic Diagram

Let’s try another way to look at this. You’re playing miniature golf and you come to the old wind mill hole. Your friend takes a shot and since the blades of the windmill are going nice and slow he gets the ball right through. Now it’s your turn. Suddenly you hear a zap and a pow and sparks go flying. Something has gone wrong with the wind mill and it starts spinning at amazing speeds. You decide to give it a try and hit the ball towards the wind mill.


Well since it is spinning out of control, those blades now form almost a solid disk so that there is no way your ball can get through the wind mill. Electrons do the same thing. They move so fast that even though there may not be many of them, they form a shell that can’t be penetrated. (To be clear, particles that are smaller than an atom can go through the shells and pop out the other side.)



Let’s go a little further with this shell thing. An atom can have as few as one and as many as seven shells. Imagine our balloon again. Now there can be a balloon inside of a balloon inside a balloon and so on. Up to seven balloons! Each balloon, whoops, I mean shell, can have only so many electrons in it. This simple equation 2n2 tells you how many electrons can be in each shell. The n stands for the number of the shell.


The first shell can have up to 2 x 1(first shell)2 or 2 electrons. The second shell can have up to 2 x 2(second shell)2 or 8 electrons. The third shell can have up to 2 x 32 or 18 electrons. The fourth shell can have up to 2 x 42 or 32 electrons. All the way up to the seventh shell which can have 2 x 72 or 98 electrons!


One last thing about shells, the shells have to be full before the electrons will go to the next shell. A helium atom will have two electrons. Both of them will be in the first shell. A Lithium atom will have three electrons. Two will be in the first shell and one (since the first shell is filled) will be in the second shell.


Electrons provide the size and stability of the atom and, as such, the mass and the structure of all matter. Electrons are also the key to all electromagnetic energy. But wait, that’s not all! It is the number of electrons in an atom that determines if and how atoms come together to form molecules. Electrons determine how and what matter will be.


Atoms like to feel satisfied and they feel satisfied if they are “full”.  An atom is “full” if its outer electron shell has as many electrons as it can hold or if there are eight or a multiple of eight (16, 24 etc.) electrons in the outer shell. This is called the octet rule and works most of the time, but is not perfect.


If an atom is not full, it is not satisfied. An unsatisfied atom needs to do something with its electrons to be happy. Luckily atoms are very friendly and love to share. Most atoms are not satisfied as individuals. The oxygen atom has six electrons in its outer shell. It needs eight electrons to be satisfied.


Luckily, two Hydrogen atoms happen by. Each one of them has only one electron in its outer shell and needs one more to be satisfied. If both Hydrogens share their one electron with the Oxygen, the oxygen has eight electrons and is satisfied. Also, if the Oxygen shares an electron with each Hydrogen, then both Hydrogens are satisfied as well. Just like your mother told you, it’s nice to share. It is this sharing of electrons that makes atoms come together to form molecules.


Click here to go to next lesson on Electrostatic Charge.

[/am4show]


To summarize, protons and neutrons are in the nucleus of an atom, and tightly bound together. The proton has a positive charge while the neutron has no charge, and both of them are much larger than the electron. The tiny electron is outside the nucleus and weakly bound to the atom and carries a negative a charge.


Please login or register to read the rest of this content.

Let’s go back to rubbing a balloon on your head. When you do this and bring it close to objects like a thin stream of water trickling out of the faucet, or small its of paper, or bubbles in the air, or even a ping pong ball on the table, did you notice now you can influence things? You can make water flick and spray, paper jump up and down, and bubbles and ping pong balls will follow your every move. But why is that?


Please login or register to read the rest of this content.

The influence you’re exerting on these objects is called the electric force,  which is a non-contact force that can happen over a distance.


Please login or register to read the rest of this content.

An electrical circuit is like a NASCAR raceway.  The electrons (racecars) zip around the race loop (wire circuit) superfast to make stuff happen. Although you can’t see the electrons zipping around the circuit, you can see the effects: lighting up LEDs, sounding buzzers, clicking relays, etc.


There are many different electrical components that make the electrons react in different ways, such as resistors (limit current), capacitors (collect a charge), transistors (gate for electrons), relays (electricity itself activates a switch), diodes (one-way street for electrons), solenoids (electrical magnet), switches (stoplight for electrons), and more.  We’re going to use a combination diode-light-bulb (LED), buzzers, and motors in our circuits right now.


A CIRCUIT looks like a CIRCLE.  When you connect the batteries to the LED with wire and make a circle, the LED lights up.  If you break open the circle, electricity (current) doesn’t flow and the LED turns dark.


LED stands for “Light Emitting Diode”.  Diodes are one-way streets for electricity – they allow electrons to flow one way but not the other.


Remember when you scuffed along the carpet?  You gathered up an electric charge in your body.  That charge was static until you zapped someone else.  The movement of electric charge is called electric current, and is measured in amperes (A). When electric current passes through a material, it does it by electrical conduction. There are different kinds of conduction, such as metallic conduction, where electrons flow through a conductor (like metal) and electrolysis, where charged atoms (called ions) flow through liquids.


Please login or register to read the rest of this content.

Click here to go to next lesson on Why does metal conduct electricity?

switch-zoomMake yourself a grab bag of fun things to test: copper pieces (nails or pipe pieces), zinc washers, pipe cleaners, Mylar, aluminum foil, pennies, nickels, keys, film canisters, paper clips, load stones (magnetic rock), other rocks, and just about anything else in the back of your desk drawer.


Certain materials conduct electricity better than others. Silver, for example, is one of the best electrical conductors on the planet, followed closely by copper and gold. Most scientists use gold contacts because, unlike silver and copper, gold does not tarnish (oxidize) as easily. Gold is a soft metal and wears away much more easily than others, but since most circuits are built for the short term (less than 50 years of use), the loss of material is unnoticeable.
Please login or register to read the rest of this content.


Click here to go to next lesson on Liquid Conductors.

When an atom (like hydrogen) or molecule (like water) loses an electron (negative charge), it becomes an ion and takes on a positive charge. When an atom (or molecule) gains an electron, it becomes a negative ion. An electrolyte is any substance (like salt) that becomes a conductor of electricity when dissolved in a solvent (like water).


This type of conductor is called an ‘ionic conductor’ because once the salt is in the water, it helps along the flow of electrons from one clip lead terminal to the other so that there is a continuous flow of electricity.


This experiment is an extension of the Conductivity Tester experiment, only in this case we’re using water as a holder for different substances, like sugar and salt. You can use orange juice, lemon juice, vinegar, baking powder, baking soda, spices, cornstarch, flour, oil, soap, shampoo, and anything else you have around. Don’t forget to test out plain water for your ‘control’ in the experiment!


Please login or register to read the rest of this content.

Click here to go to next lesson on Superconductors.

When I was in 10th grade, my teammate and I designed what we thought was pretty clever: a superconductor roller coaster, which we imagined would float effortlessly above its magnetic track. Of course, our roller coaster was only designed on paper, because yttrium barium copper oxide ceramics had only just been discovered by top scientists.



Did you notice how it was smoking in the video? That’s because it was so cold! The usual problem with superconductors is that they need to be incredibly cold in order to exhibit superconductive properties.  Yttrium barium copper oxide (YBa2Cu3O7) was the first compound that used liquid nitrogen for cooling, making superconductors a lot less expensive to work with – you no longer needed a cryogenic lab in order to levitate objects above a magnet.



Recently, scientists have found a way to make an amazing superconductor by taking a single crystal sapphire wafer and coating it with a thin (~1µm thick) ceramic material (yttrium barium copper oxide). Normally, the ceramic layer has no interesting magnetic or electrical properties, but that’s when you’re looking at it at room temperature. If you cool this material below -185ºC (-301ºF), it turns out that the ceramic material becomes a superconductor, meaning that it conducts electricity without resistance, with no energy loss. Zero. That’s what makes it a ‘superconductor’.


To further understand superconductivity, it’s helpful to understand what normally happens to electricity as it flows through a wire. As you may know, energy cannot be created or destroyed, but can be changed from one form to another.


In the case of wires, some of the electrical energy is changed to heat energy. If you’ve ever touched a wire that had been in use for a while, and discovered it was hot, you’ve experienced this. The heat energy is a waste. It simply means that less electricity gets to its final destination.


This is why superconductivity is so cool (no pun intended.) By cooling things down to temperatures near absolute zero, which is as low as temperatures can get, you can create a phenomenon where electricity flows without having any of it converted to heat.


Why do superconductors float above magnets?

Scientists also figured out that superconductors and magnetic field really do not like each other. The Meissner effect happens when a superconductor expels all its magnetic fields from inside.


However, if you make your superconductor thin enough, you can get the magnetic field to penetrate in discrete quantities (this is real quantum physics now) called flux tubes (the blue lines that go through the disc).


Inside each of the magnetic flux tubes, the superconductivity is destroyed, but the superconductor tries to keep the magnetic tubes pinned in weak areas and any movement of the superconductor itself (like if you pushed it) causes the flux tubes to move, and this is what traps (or locks) the superconductor in midair.



If you’d like to experiment with superconductors yourself, check out this information.


Click here to go to next lesson on The difference between polarizing and charging.

Have you ever had a bad hair day? Did you happen to notice if the air was drier or wetter weather on those days? Usually folks have bad hair days when the air is drier, which is when static charge can build up more easily. Some folks notice every time they touch a doorknob, slide down a plastic slide, or scuff along the carpet in socks that they get zapped. Since there’s less water vapor in the air on drier days, there’s more of a chance for static charge to build up. The water molecule dissipates the static charge, and the more wet the air is (humid), the less static build up there is. Static electricity experiments are really hard to do on humid days, especially if it’s raining outside!
Please login or register to read the rest of this content.


Johannes Kepler, a German astronomer famous for his laws of planetary motion. Check out our Johannes Kepler facts page for more information.
Johannes Kepler, a German astronomer famous for his laws of planetary motion. Check out our Johannes Kepler facts page for more information.

Johannes Kepler, a German mathematician and astronomer in the 1600s, was one of the key players of his time in astronomy. Among his best discoveries was the development of three laws of planetary orbits. He worked for Tycho Brahe, who had logged huge volumes of astronomical data, which was later passed onto to Kepler. Kepler took this information to design and develop his ideas about the movements of the planets around the Sun.


Kepler’s 1st Law states that planetary orbits about the Sun are not circles, but rather ellipses. The Sun lies at one of the foci of the ellipse.


Well, almost.


Newton’s Laws of Motion state that the Sun can’t be stationary, because the Sun is pulling on the planet just as hard as the planet is pulling on the Sun. They are yanking on each other. The planet will move more due to this pulling because it is less massive. The real trick to understanding this law is that both objects orbit around a common point that is the center of mass for both objects. If you’ve ever swung a heavy bag of oranges around in a circle, you know that you have to lean back a bit to balance yourself as you swing around and around. It’s the same principle, just on a smaller scale.


Please login or register to read the rest of this content.

Johannes Kepler, a German astronomer famous for his laws of planetary motion. Check out our Johannes Kepler facts page for more information.
Johannes Kepler, a German astronomer famous for his laws of planetary motion. Check out our Johannes Kepler facts page for more information.

Kepler’s Laws of planetary orbits explain why the planets move at the speeds they do. You’ll be making a scale model of the solar system and tracking orbital speeds.


Kepler’s 1st Law states that planetary orbits about the Sun are not circles, but rather ellipses. The Sun lies at one of the foci of the ellipse. Kepler’s 2nd Law states that a line connecting the Sun and an orbiting planet will sweep out equal areas in for a given amount of time. Translation: the further away a planet is from the Sun, the slower it goes.
Please login or register to read the rest of this content.


If one of Kepler’s Laws describe the orbits of satellites as being an elliptical orbit, you might be wondering what an ellipse is! Here’s a really neat way to make an ellipse using a pencil and a rubber band:



 


Click here to go to next lesson on Applying Kepler’s Laws.

[/am4show]


Let’s try a few practice problems so you get more familiar with how to use and apply Kepler’s Laws to real world physics problems…


Please login or register to read the rest of this content.

A satellite is an object that orbits the sun, earth or other massive body like a planet, moon, asteroid, or even galaxy. There are two kinds of satellites: natural, like the moon, and man-made, like the Hubble Space Telescope.


Please login or register to read the rest of this content.

But physics doesn’t care if a satellite is man-made or not. The laws of physics and math equations still apply no matter where the satellite came from.


Please login or register to read the rest of this content.

An important concept to understand is that a satellite is a projectile, meaning that only the force of gravity is acted on it (once it’s launched). In order to maintain it’s orbit, a satellite needs to fall continuously at the same rate that the earth is curving away from it.


Please login or register to read the rest of this content.

The Hubble Space Telescope (HST) zooms around the Earth once every 90 minutes (about 5 miles per second), and in August 2008, Hubble completed 100,000 orbits! Although the HST was not the first space telescope, is the one of the largest and most publicized scientific instrument around. Hubble is a collaboration project between NASA and the ESA (European Space Agency), and is one of NASA’s “Great Observatories” (others include Compton Gamma Ray Observatory, Chandra X-Ray Observatory, and Spitzer Space Telescope). Anyone can apply for time on the telescope (you do not need to be affiliated with any academic institution or company), but it’s a tight squeeze to get on the schedule.


Hubble’s orbit zooms high in the upper atmosphere to steer clear of the obscuring haze of molecules in the sea of air. Hubble’s orbit slowly decays over time and begins to spiral back into Earth until the astronauts bump it back up into a higher orbit.


But how does a satellite stay in orbit? Try this experiment now:


Materials:


  • marble
  • paper
  • tape
Please login or register to read the rest of this content.