This is a recording of a recent live teleclass I did with thousands of kids from all over the world. I’ve included it here so you can participate and learn, too!


Soar, zoom, fly, twirl, and gyrate with these amazing hands-on classes which investigate the world of flight. Students created flying contraptions from paper airplanes and hangliders to kites! Topics we will cover include: air pressure, flight dynamics, and Bernoulli’s principle.


Materials:


  • 5 sheets of 8.5×11” paper
  • 2 index cards
  • 2 straws
  • 2 small paper clips
  • Scissors, tape
  • Optional: ping pong ball and a small funnel
Please login or register to read the rest of this content.

This lab is a physical model of what happens on Mercury when two magnetic fields collide and form magnetic tornadoes.


You’ll get to investigate what an invisible magnetic tornado looks like when it sweeps across Mercury.


Materials


  • Two clear plastic bottles (2 liter soda bottles work best)
  • Steel washer with a 3/8 inch hole
  • Ruler and stopwatch
  • Glitter or confetti (optional)
  • Duct tape (optional)
Please login or register to read the rest of this content.

When something feels hot to you, the molecules in that something are moving very fast. When something feels cool to you, the molecules in that object aren’t moving quite so fast. Believe it or not, your body perceives how fast molecules are moving by how hot or cold something feels. Your body has a variety of antennae to detect energy. Your eyes perceive certain frequencies of electromagnetic waves as light. Your ears perceive certain frequencies of longitudinal waves as sound. Your skin, mouth and tongue can perceive thermal energy as hot or cold. What a magnificent energy sensing instrument you are!


Let’s find out how to watch the hot and cold currents in water. Here’s what you need to do:


Please login or register to read the rest of this content.

Every time I’m served a hot bowl of soup or a cup of coffee with cream I love to sit and watch the convection currents. You may look a little silly staring at your soup but give it a try sometime!


Convection is a little more difficult to understand than conduction. Heat is transferred by convection by moving currents of a gas or a liquid. Hot air rises and cold air sinks. It turns out, that hot liquid rises and cold liquid sinks as well.


Room heaters generally work by convection. The heater heats up the air next to it which makes the air rise. As the air rises it pulls more air in to take its place which then heats up that air and makes it rise as well. As the air get close to the ceiling it may cool. The cooler air sinks to the ground and gets pulled back near the heat source. There it heats up again and rises back up.


This movement of heating and cooling air is convection and it can eventually heat an entire room or a pot of soup. This experiment should allow you to see convection currents.


Please login or register to read the rest of this content.

If you’ve ever owned a fish tank, you know that you need a filter with a pump. Other than cleaning out the fish poop, why else do you need a filter? (Hint: think about a glass of water next to your bed. Does it taste different the next day?)


There are tiny air bubbles trapped inside the water, and you can see this when you boil a pot of water on the stove. The experimental setup shown in the video illustrates how a completely sealed tube of water can be heated… and then bubbles come out one end BEFORE the water reaches a boiling point. The tiny bubbles smoosh together to form a larger bubble, showing you that air is dissolved in the water.


Materials:


  • test tube clamp
  • test tube
  • lighter (with adult help)
  • alcohol burner or votive candle
  • right-angle glass tube inserted into a single-hole stopper
  • regular tap water
Please login or register to read the rest of this content.

This experiment is for advanced students.Have you ever taken a gulp of the ocean? Seawater can be extremely salty! There are large quantities of salt dissolved into the water as it rolled across the land and into the sea. Drinking ocean water will actually make you thirstier (think of eating a lot of pretzels). So what can you do if you’re deserted on an island with only your chemistry set?


Let me show you how to take the salt out of water with this easy setup.


Please login or register to read the rest of this content.

Indoor Rain Clouds

Making indoor rain clouds demonstrates the idea of temperature, the measure of how hot or cold something is. Here’s how to do it:


Take two clear glasses that fit snugly together when stacked. (Cylindrical glasses with straight sides work well.)


Fill one glass half-full with ice water and the other half-full with very hot water (definitely an adult job – and take care not to shatter the glass with the hot water!). Be sure to leave enough air space for the clouds to form in the hot glass.


Please login or register to read the rest of this content.

Did you know that supercooled liquids need to heat up in order to freeze into a solid? It’s totally backwards, I know…but it’s true! Here’s the deal:


A supercooled liquid is a liquid that you slowly and carefully bring down the temperature below the normal freezing point and still have it be a liquid. We did this in our Instant Ice experiment.


Since the temperature is now below the freezing point, if you disturb the solution, it will need to heat up in order to go back up to the freezing point in order to turn into a solid.


When this happens, the solution gives off heat as it freezes. So instead of cold ice, you have hot ice. Weird, isn’t it?


Sodium acetate is a colorless salt used making rubber, dying clothing, and neutralizing sulfuric acid (the acid found in car batteries) spills. It’s also commonly available in heating packs, since the liquid-solid process is completely reversible – you can melt the solid back into a liquid and do this experiment over and over again!


The crystals melt at 136oF (58oC), so you can pop this in a saucepan of boiling water (wrap it in a towel first so you don’t melt the bag) for about 10 minutes to liquify the crystals.


Please login or register to read the rest of this content.

Supercooling a liquid is a really neat way of keeping the liquid a liquid below the freezing temperature. Normally, when you decrease the temperature of water below 32oF, it turns into ice. But if you do it gently and slowly enough, it will stay a liquid, albeit a really cold one!


In nature, you’ll find supercooled water drops in freezing rain and also inside cumulus clouds. Pilots that fly through these clouds need to pay careful attention, as ice can instantly form on the instrument ports causing the instruments to fail. More dangerous is when it forms on the wings, changing the shape of the wing and causing the wing to stop producing lift. Most planes have de-icing capabilities, but the pilot still needs to turn it on.


We’re going to supercool water, and then disturb it to watch the crystals grow right before our eyes! While we’re only going to supercool it a couple of degrees, scientists can actually supercool water to below -43oF!


Please login or register to read the rest of this content.

This is a recording of a recent live teleclass I did with thousands of kids from all over the world. I’ve included it here so you can participate and learn, too!


You’ll discover how to boil water at room temperature, heat up ice to freeze it, make a fire water balloon, and build a real working steam boat as you learn about heat energy. You’ll also learn about thermal energy, heat capacity, and the laws of thermodynamics.


Materials:


  • cup of ice water
  • cup of room temperature water
  • cup of hot water (not scalding or boiling!)
  • tea light candle and lighter (with adult help)
  • balloon (not inflated)
  • syringe (without the needle)
  • block of foam
  • copper tubing (¼” diameter and 12” long)
  • bathtub or sink
  • scissors or razor
  • fat marker (to be used to wrap things around, not for writing)
Please login or register to read the rest of this content.

Although urine is sterile, it has hundreds of different kinds of wastes from the body. All sorts of things affect what is in your urine, including last night’s dinner, how much water you drink, what you do for exercise, and how well your kidneys work in the first place. This experiment will show you how the kidneys work to keep your body in top shape.


Please login or register to read the rest of this content.

Our sense of touch provides us with information that helps us to process and explore our world. Nerves play an important part in the sense of touch by being the wires that carry signals from the skin to the brain. But the body has a plan in place so that our brains don’t get overwhelmed with too much information. This plan is a lot like a blueprint for wiring a house. Just like a house has light switches and electrical outlets in strategic locations, our bodies have touch receptors of various numbers based on their location. In this lab, we will explore an arm to determine where the highest concentrations of nerves are in that limb.


Please login or register to read the rest of this content.

How do you think animals know we’re around long before they see us? Sure, most have a powerful sense of smell, but they can also hear us first. In this activity, we are going to simulate enhanced tympanic membranes (or ear drums) by attaching styrofoam cups to your ears. This will increase the number of sound waves your ears are able to capture.


Please login or register to read the rest of this content.

Have you ever held a plastic ruler over the edge of a desk or table and whacked the end of it? If so, you would notice a funny sound. This sound changes if you change the length of the ruler that is hanging over the edge. The sound you hear is made by the ruler’s vibrations.


In this lab, we begin to learn about sound. You know it is collected and deciphered by your ears, but did you also know that all sound is made when something vibrates? It could be a guitar string, vocal chords in your throat, or a plastic ruler that is hanging over the edge of the desk: vibrations make sound.


Please login or register to read the rest of this content.

You know that sound comes from vibration which are picked up by the pinna (external part of the ears). Then the vibrations vibrate your tympanic membrane, which in turn vibrates the ossicles and then the cochlea. The cochlea sends information through the auditory nerve and sends it to the brain, which recognizes it as sound.


In this lab, you will testing your ability to sort and match different sounds.


Please login or register to read the rest of this content.

Sound has the ability to travel through the states of matter: solids, liquids, and gases. In this experiment we will study the movement of sound through these three states.


Please login or register to read the rest of this content.

Levers are classified into three types: first class, second class, or third class. Their class is identified by the location of the load, the force moving the load, and the fulcrum. In this activity, you will learn about the types of levers and then use your body to make each type.

Please login or register to read the rest of this content.

 


Your eyes have two different light receptors located on the back of the eyeball. These are the rods, which see black, white and grays, and the cones, which see color. In order to adapt to the dark, our eyes make a chemical called visual purple. This helps the rods to see and transmit what you see in situations where there is little light.


Your pupils also increase in diameter in the darkness. This allows for a slight increase in the amount of light entering your eye. This combination of visual purple and more light makes it possible for you to see in darker situations.


Please login or register to read the rest of this content.

Voluntary nerves are the ones that are under our direct control. Others, called involuntary nerves, are under the control of our brains and create involuntary reactions.


Please login or register to read the rest of this content.

Your optic nerve can be thought of as a data cord that is plugged in to each eye and connects them to your brain. The area where the nerve connects to the back of your eye creates a blind spot. There are no receptors in this area at all and if something is in that area, you won’t be able to see it. This experiment locates your blind spot.


Please login or register to read the rest of this content.

Like sound, light travels in waves. These waves of light enter your eyes through the pupil, which is the small black dot right in the center of your colored iris. Your lens bends and focuses the light that enters your eye. In this experiment, we will study this process of bending light and we will look at the difference between concave and convex lenses.


Please login or register to read the rest of this content.

 Like sound, light travels in waves. These waves of light enter your eyes through the pupil, which is the small black dot right in the center of your colored iris. Your lens bends and focuses the light that enters your eye. In this experiment, we will study this process of bending light and we will look at the difference between concave and convex lenses.


Please login or register to read the rest of this content.

In this lab, we are going to make an eyeball model using a balloon. This experiment should give you a better idea of how your eyes work. The way your brain actually sees things is still a mystery, but using the balloon we can get a good working model of how light gets to your brain.


Please login or register to read the rest of this content.

This experiment not only explains how your body uses oxygen, but it is also an experiment in air pressure circles – bonus!  You will be putting a dime in a tart pan that has a bit of water in it. Then you will put a lit candle next to the dime and put a glass over the candle with the glass’s edge on the dime. Once all of the air inside the glass is used up by the candle, the dime will be easy to pick up without even getting your fingers wet! Ready to give it a try?


Please login or register to read the rest of this content.

Everything living produces some sort of odor. Flowers use them to entice bees to pollinate them. We know that the tastes of foods are enhanced by the way that they smell. As humans, each of us even has own unique odor.

In this lab, we look at the diffusion of scents. They start in one place, but often end up spread around the room and can be detected by many people.

Please login or register to read the rest of this content.

 


Peristalsis is the wavelike movement of muscles that move food through your gastrointestinal tract. The process of digestion begins with chewing and mixing the food with saliva. From there, the epiglottis opens up to deposit a hunk of chewed food (called bolus) into your esophagus – this is the tube that runs from your mouth to your stomach. Since the esophagus is so skinny, the muscles along it must expand and contract in order to move food down. In this activity we will examine that process.


Please login or register to read the rest of this content.

We now know that odor molecules are diffused throughout a room by the motion of air molecules, which are constantly moving and bumping into them.  We also know that warm air moves faster than cold air, and that increasing the movement of the air (like with a fan) will increase the diffusion process.


In this experiment, we look at what happens when the odor molecules find their way into your nose. Your nose has smell cells located in a small area called the olfactory epithelium. We will use them here to match smells with other smells.


Please login or register to read the rest of this content.

An oxygen and carbon dioxide exchange takes place in your bloodstream. When you breathe air into your lungs it brings in oxygen, which is carried from your lungs by red blood cells in your bloodstream. Cells of your body use the oxygen and carbon dioxide is produced as waste, which is carried by your blood back to your lungs. You exhale and release the C02. You will study this exchange in today’s lab.


You will be using a pH indicator known as bromothymol blue. When you exhale into a baggie, the carbon dioxide will react with water in the bag. This reaction produces carbonic acid, which starts to acidify the water. More breathes in the bag equal more carbon dioxide, which equal a lower (more acidic) pH. You will notice the bromothymol will turn green when the pH of the water is right about 6.8 and it will turn yellow when the pH drops further to 6.0 and lower.


Please login or register to read the rest of this content.

Food and air both enter your body through your mouth, diverging when they reach the esophagus and trachea. Food goes to the gastrointestinal tract through your esophagus and air travels to your lungs via the trachea, or windpipe.


You will be making a model of how your lungs work in this lab. It will include the trachea, lungs, and the diaphragm, which expands and contracts as it fills and empties your lungs.


Please login or register to read the rest of this content.

Today you will make a calibrated, or marked, container that you will use to measure your lung capacity. You will fill the calibrated container with water, slide a hose into it, take a really deep breath, and blow in the hose. As the air in your lungs enters the container, it will push out the water inside. Just blow as long and as much as you can, then when you flip the bottle over you will be able to read the amount of water you have displaced. If you will subtract the water displaced from the total amount of water in the bottle, the result is your lung capacity.


Please login or register to read the rest of this content.

When you exercise your body requires more oxygen in order to burn the fuel that has been stored in your muscles.  Since oxygen is moved through your body by red blood cells, exercise increases your heart rate so that the blood can be pumped through your body faster. This delivers the needed oxygen to your muscles faster. The harder you exercise, the more oxygen is needed, so your heart and blood pump even faster still.


Please login or register to read the rest of this content.

Stethoscopes are instruments used to amplify sounds like your heartbeat. Your doctor is trained to use a stethoscope not only to count the beats, but he or she can also hear things like your blood entering and exiting the heart
and its valves opening and closing. Pretty cool!


Today you will make and test a homemade stethoscope. Even though it will be pretty simple, you should still be able to hear your heart beating and your heart pumping. You can also use it to listen to your lungs, just like your doctor does.


Please login or register to read the rest of this content.

Did you know that your tongue can taste about 10,000 unique flavors? Our tongues take an organized approach to flavor classification by dividing tastes into the four basic categories of sweet, sour, salty, and bitter.


For this experiment, you will need a brave partner! They will be blindfolded and will be attempting to guess foods. Relying only on their sense of taste, they will try to determine what kind of foods you are giving them.


Please login or register to read the rest of this content.

The tongue has an ingenious design. Receptors responsible for getting information are separate and compartmentalized. So, different areas on the tongue actually have receptors for different types of tastes. This helps us to separate and enjoy the distinct flavors. In this experiment, you will be locating the receptors for sweet, sour, salty, and bitter on the tongue’s surface.


Please login or register to read the rest of this content.

Digestion starts in your mouth as soon as you start to chew. Your saliva is full of enzymes. They are a kind of chemical key that unlock chains of protein, fat, and starch molecules. Enzymes break these chains down into smaller molecules like sugars and amino acids.


In this experiment, we will examine how the enzymes in your mouth help to break down the starch in a cracker. You will test the cracker to confirm starch content, then put it in your mouth and chew it for a long time in order to really let the enzymes do their job. Finally you will test the cracker for starch content and see what has happened as a result of your chewing.


Please login or register to read the rest of this content.

We have done some extensive experiments on taste buds: how they are categorized, what tastes they recognize, and we have even mapped their location on your tongue. But we haven’t yet mentioned this fact: not all people can taste the same flavors!


So today we will check to see if you have a dominant or recessive gene for a distinct genetic characteristic. We’ll do this by testing your reaction to the taste of a chemical called phenylthiocarbamide (or PTC, for short). The interesting thing about PTC is that some people can taste it – and generally have a very adverse reaction. However, some people can’t taste it at all.


Please login or register to read the rest of this content.

The buildup of things like food and bacteria where your gums and teeth meet, and also between your teeth, is called plaque. Where plaque lives is also where the bacteria turns the sugar in your mouth into harmful acids that attack your teeth’s enamel and can lead to gum disease. Regular brushing is a great way to remove plaque and keep your mouth healthy.


Please login or register to read the rest of this content.

Involuntary responses are ones that you can’t control, but they are usually in place to help with survival. One good example is when you touch something hot. Your hand does not take the time to send a message to your brain and then have the brain tell your hand to pull away. By then, your hand might be seriously hurt! Instead, your body immediately removes your hand in order to protect it from further harm.


Today you will test an involuntary reflex by using the tendon reflex test. A thick, rubbery band called the patellar tendon holds your knee cap in place. Having one leg on top of the other not only stretches the tendon, but it also makes it possible to see a reaction. You can test the reflex by giving your tendon a tap and watching what happens.


Please login or register to read the rest of this content.

The skeleton is your body’s internal supporting structure. It holds everything together. In addition to providing support, bones act as shock absorbers when you jump, fall, and run. Bones have big responsibilities and so they must be really strong. They also need to be arranged properly for the best support and shock absorption.


In this experiment, we will look at the internal arrangement of the bones holding together your body.


Please login or register to read the rest of this content.

Some groups of muscles are stronger than others because each group is designed for a different and specific function. It just makes sense that the muscle groups in our legs would need to be stronger than the ones in our toes.


For this experiment, you will use a bathroom scale to test the strength of various muscle groups.


Please login or register to read the rest of this content.

In this experiment, we will continue to explore Ruffini’s endings in your skin. We also look at your body’s ability to detect temperature and regulate its own temperature. You will study how the body cools and warms itself.


Please login or register to read the rest of this content.

Your fingers have receptors which perform various jobs. In addition to touch, they can detect pressure, texture, and other physical stimuli.  One specialized type of receptors is called Ruffini’s receptors. They are good at identifying changes in pressure and temperature. In this experiment, we will test their ability to distinguish between hot and cold temperatures. We are actually going to try and trick your Ruffini endings. Do you think it will work?


Please login or register to read the rest of this content.

Skin has another function that it vital to your survival: temperature regulation. Being exposed to high temperatures causes your skin’s pores to open up and release sweat onto your body. This helps cool us off by the resulting process of evaporation.


Your pores will close in extremely cold temperatures. Also, the body stops blood flowing to the skin in order to conserve heat for the important vital organs and their processes.


In this lab, we study the moisture that your skin produces – even when you are not aware of it!


Please login or register to read the rest of this content.

This lab has two parts. First, you will learn a bit about how specific chemicals react in a specific manner. And next, you will learn a bit of biology: the structure of bird bones and the minerals that compose them.


Please login or register to read the rest of this content.

This experiment has two parts. For the first half, you will mix two chemicals that will produce heat and gas. The temperature receptors in your skin will be able to detect the heat. Your ears will detect the gas at it vibrates and escapes its container.


In the second portion you will demonstrate a characteristic in a chemical reaction. For this experiment, it will be an endothermic reaction, which is the absorption of heat energy. This type of reaction is easy to notice because it makes things cold to touch.  The chemical you will be using, ammonium nitrate, is actually used in emergency cold packs.


Please login or register to read the rest of this content.

In addition to looking pretty neat with all those loops and whirls, your fingertips are great at multitasking. The skin on them has a ton of receptors that help us to gather a lot of information about our environment such as texture, movement, pressure, and temperature.


This experiment will test your ability to determine textures by using touch receptors. You will use shoeboxes with holes cut into them to make texture boxes. Each box will have a textured surface that you can feel, but not see. Through the receptors in your fingers, you will determine whether the surface is rough, waxy, soft, or smooth.


Please login or register to read the rest of this content.

Did you know that the patterns on the tips of your fingers are unique? It’s true! Just like no two snowflakes are alike, no two people have the same set of fingerprints. In this experiment, you will be using a chemical reaction to generate your own set of blood-red prints.


Please login or register to read the rest of this content.

Your body moves when muscles pull on the bones through ligaments and tendons. Ligaments attach the bones to other bones, and the tendons attach the bones to the muscles.


If you place your relaxed arm on a table, palm-side up, you can get the fingers to move by pushing on the tendons below your wrist. We’re going to make a real working model of your hand, complete with the tendons that move the fingers! Are you ready?


Please login or register to read the rest of this content.

A gram of water (about a thimble of water) contains 1023 atoms. (That’s a ‘1’ with 23 zeros after it.) That means there are 1,000,000,000,000,000,000,000,000 atoms in a thimble of water! That’s more atoms than there are drops of water in all the lakes and rivers in the world.


Nearly all the mass of an atom is in its nucleus which occupies less than a trillionth of the volume of the atom. They are very dense. If you could pack nuclei like marbles, into something the size of a large pea, they would weigh about a billion tons! That’s 2,000,000,000,000 pounds! More than the weight of 20,000 battle ships! That’s a heavy pea!


Please login or register to read the rest of this content.

This experiment is for advanced students. This lab builds on concepts from the previous carbon dioxide lab.


Limewater….carbon dioxide…indicators. We don’t know too much about these things. Sure, we know a little. Carbon dioxide is exhaled by us and plants need it to grow. Burning fossil fuels produces carbon dioxide.


Indicators…something we observe that confirms to us that something specific is happening. Lime water turns cloudy and forms a precipitate in the presence of carbon dioxide. Blue litmus paper turns red in the presence of an acid. The dog barking at the door and dancing around indicates that you better let the dog out, and quick, to avoid….a pet spill?


Please login or register to read the rest of this content.

This experiment is for advanced students.


ACID!!! The word causes fear to creep in and get our attention.


BASIC!!! The word causes nothing to stir in most of us.


The truth is, a strong acid (pH 0-1) is dangerous, but a strong basic (pH 13-14) is just as dangerous. In this lab, we will get comfortable with the basics of bases and the acidity of acids along with how you can use both and tell the difference between them.


Please login or register to read the rest of this content.

This experiment is for advanced students.


Don’t put this in your car….yet. Hydrogen generation, capture, and combustion are big deals right now. The next phase of transportation, and a move away from fossil fuels in not found in electric cars. Electric cars are waiting until hydrogen fuel cell vehicles become practical. It can be done and is being done.


Cars being powered by hydrogen are here, but not on the market yet. Engineers and chemists are always finding new ways to improve the chemical reaction that produces hydrogen and making the vehicles more efficiently use the fuel. Hydrogen fuel is not just easy to make, it is inexpensive, and the “exhaust” is water.


We will generate hydrogen in this lab. We will also see how combustible it is. Just let your imagination wander….just a bit and you will see noiseless cars and trucks zipping along the streets and interstates, carrying people and cargo. The Indianapolis 500 wouldn’t be quite the same, though. “And there they go, roaring, I mean quietly entering turn two…”


Please login or register to read the rest of this content.

Ever wonder how the water draining down your sink gets clean again? Think about it: The water you use to clean your dishes is the same water that runs through the toilet.  There is only one water pipe to the house, and that source provides water for the dishwasher, tub, sink, washing machine, toilet, fish tank, and water filter on the front of your fridge.  And there’s only one drain from your house, too!  How can you be sure what’s in the water you’re using?


This experiment will help you turn not only your coffee back into clear water, but the swamp muck from the back yard as well.  Let’s get started.
Please login or register to read the rest of this content.


Phenolphthalein is a weak, colorless acid that changes color when it touches acidic (turns orange) or basic (turns pink/fuchsia) substances. People used to take it as a laxative (not recommended today, as ingesting high amounts may cause cancer). Use gloves when handling this chemical, as your skin  can absorb it on contact. I’ll show you how:


Please login or register to read the rest of this content.

You can use this as real ink by using it BEFORE you combine them together like this: dip a toothpick into the first solution (sodium ferrocyanide solution) and with the tip write onto a sheet of paper.


While the writing is drying, dip a piece of paper towel int other solution (ferric ammonium sulfate solution) and gently blot along where you wrote on the paper… and the color appears as blue ink. You can make your secret message disappear by wiping a paper towel dipped in a sodium carbonate solution.


You can also grow purple, gold, and red crystals with these chemicals… we’ll show you how!


Materials:


  • sodium ferrocyanide
  • ferric ammonium sulfate
  • 2 test tubes
  • distilled water
  • goggles and gloves
  • water
Please login or register to read the rest of this content.

This experiment is for advanced students.Have you ever taken a gulp of the ocean? Seawater can be extremely salty! There are large quantities of salt dissolved into the water as it rolled across the land and into the sea. Drinking ocean water will actually make you thirstier (think of eating a lot of pretzels). So what can you do if you’re deserted on an island with only your chemistry set?


Let me show you how to take the salt out of water with this easy setup.


Please login or register to read the rest of this content.

Mars is coated with iron oxide, which not only covers the surface but is also present in the rocks made by the volcanoes on Mars.


Today you get to perform a chemistry experiment that investigates the different kinds of rust and shows that given the right conditions, anything containing iron will eventually break down and corrode. When iron rusts, it’s actually going through a chemical reaction: Steel (iron) + Water (oxygen) + Air (oxygen) = Rust
Materials


  • Four empty water bottles
  • Four balloons
  • Water
  • Steel wool
  • Vinegar
  • Water
  • Salt
Please login or register to read the rest of this content.

Instead of using glue as a polymer (as in the slime recipes above), we're going to use PVA (polyvinyl alcohol). Most liquids are unconnected molecules bouncing around. Monomers (single molecules) flow very easily and don't clump together. When you link up monomers into longer segments, you form polymers (long chains of molecules).

Polymers don't flow very easily at all - they tend to get tangled up until you add the cross-linking agent, which buddies up the different segments of the molecule chains together into a climbing-rope design.

Please login or register to read the rest of this content.


Magnesium is one of the most common elements in the Earth’s crust. This alkaline earth metal is silvery white, and soft. As you perform this lab, think about why magnesium is used in emergency flares and fireworks. Farmers use it in fertilizers, pharmacists use it in laxatives and antacids, and engineers mix it with aluminum to create the BMW N52 6-cylinder magnesium engine block. Photographers used to use magnesium powder in the camera's flash before xenon bulbs were available.

Most folks, however, equate magnesium with a burning white flame. Magnesium fires burn too hot to be extinguished using water, so most firefighters use sand or graphite.

We're going to learn how to (safely) ignite a piece of magnesium in the first experiment, and next how to get energy from it by using it in a battery in the second experiment. Are you ready?

Please login or register to read the rest of this content.


Is it hot where you live in the summer? What if I gave you a recipe for making ice cream that doesn’t require an expensive ice cream maker, hours of churning, and can be made to any flavor you can dream up? (Even dairy-free if needed?)


If you’ve got a backyard full of busy kids that seem to constantly be in motion, then this is the project for you.  The best part is, you don’t have to do any of the churning work… the kids will handle it all for you!


This experiment is simple to set up (it only requires a trip to the grocery store), quick to implement, and all you need to do guard the back door armed with a hose to douse the kids before they tramp back into the house afterward.


One of the secrets to making great ice cream quickly is Please login or register to read the rest of this content.


If you don’t have equipment lying around for this experiment, wait until you complete Unit 10 (Electricity) and then come back to complete this experiment. It’s definitely worth it!


Electroplating was first figured out by Michael Faraday. The copper dissolves and shoots over to the key and gets stuck as a thin layer onto the metal key. During this process, hydrogen bubbles up and is released as a gas. People use this technique to add material to undersized parts, for place a protective layer of material on objects, to add aesthetic qualities to an object.


Materials:


  • one shiny metal key
  • 2 alligator clips
  • 9V battery clip
  • copper sulfate (MSDS)
  • one copper strip or shiny copper penny
  • one empty pickle jar
  • 9V battery
Please login or register to read the rest of this content.

This is looks like a chemical reaction but it's not - it's really just a physical change. It's a really neat trick you can do for your friends or in a magic show. Here's how it works:

Supplies:

  • acetone
  • pie pan (or other shallow baking dish)
  • Styrofoam cup

 

Please login or register to read the rest of this content.


This experiment is for advanced students.


Lewis and Clark did this same experiment when they reached the Oregon coast in 1805. Men from the expedition traveled fifteen miles south of the fort they had built at the mouth of the Columbia River to where Seaside, Oregon now thrives.


In 1805, however, it was just men from the fort and Indians. They built an oven of rocks. For six weeks, they processed 1,400 gallons of seawater, boiling the water off to gain 28 gallons of salt.


Please login or register to read the rest of this content.

Have you ever tried washing dishes without soap? It doesn’t work well, especially if there’s a lot of grease, fat, or oil on the dish!


The oils and fats are slippery and repel water, which makes them a great choice for lubration of bearing and wheels, but lousy for cleaning up after dinner.


So what’s inside soap that makes it clean off the dish? The soap molecule looks a lot like a snake, with a head and a tail. The long tail loves oil (hydrophobic) and the head loves water (hydrophilic). The hydrophilic end dissolves in water and the hydrophobic end wraps itself around fat and oil in the dirty water, cleaning it off your dishes.


Let’s do an experiment that will really make you appreciate soap and fat:


Please login or register to read the rest of this content.

This experiment is for advanced students.


Glo-sticks! Parents hang them from their trick or treaters, backpackers read with them light late at night in a tent. Glo-sticks work on the principle of chemiluminescence.  Chemiluminescence is defined as emitting light without heat as the result of a chemical reaction.


Please login or register to read the rest of this content.

Cobalt chloride (CoCl2) has a dramatic color change when combined with water, making it a great water indicator. A concentrated solution of cobalt chloride is red at room temperature, blue when heated, and pale-to-clear when frozen. The cobalt chloride we’re using is actually cobalt chloride hexahydrate, which means that each CoCl2 molecule also has six water molecules (6H2O) stuck to it.


Please login or register to read the rest of this content.

Magician Tom Noddy

If you’re fascinated by the simple complexity of the standard soap bubble, then this is the lab for you. You can easily transform these ideas into a block-party Bubble Festival, or just have extra fun in the nightly bathtub. Either way, your kids will not only learn about the science of water, molecules, and surface tension, they’ll also leave this lab cleaner than they started (which is highly unusually for science experiments!)


Soap also makes water stretchy. If you’ve ever tried making bubbles with your mouth just using spit, you know that you can’t get the larger, fist-sized spit bubbles to form completely and detach to float away in the air. Spit is 94% water, and water by itself has too much surface tension, too many forces holding the molecules together. When you add soap to it, they relax a bit and stretch out. Soap makes water stretch and form into a bubble.
Please login or register to read the rest of this content.


This is a recording of a recent live teleclass I did with thousands of kids from all over the world. I’ve included it here so you can participate and learn, too!


We’re going to be mixing up dinosaur toothpaste, doing experiments with catalysts, discovering the 5 states of matter, and building your own chemistry lab station as we cover chemical kinetics, phase shifts, the states of matter, atoms, molecules, elements, chemical reactions, and much more. We’re also going to turn liquid polymers into glowing putty so you can amaze your friends when it totally glows in the dark. AND make liquids freeze by heating them up (no kidding) using a scientific principle called supercooling,


Materials:


  • Chemistry Worksheet
  • Aluminum pie plate
  • Bowl
  • Clear glue or white glue
  • Disposable cups
  • Goggles & gloves
  • Hydrogen peroxide
  • OPTIONAL: Instant reusable hand warmer (containing sodium acetate )
  • Liquid soap
  • Popsicle sticks
  • Scissors or pliers
  • Sodium tetraborate (also called “Borax”)
  • Water bottle
  • Yeast
  • Yellow highlighter
  • Optional: If you want to see your experiments glow in the dark, you’ll need a fluorescent UV black light (about $10 from the pet store – look in cleaning supplies under “Urine-Off” for a fluorescent UV light). UV flashlights and UV LEDs will not work.
Please login or register to read the rest of this content.

A magnetic field is the area around a magnet or an electrical current that attracts or repels objects that are placed in the field. The closer the object is to the magnet, the more powerfully it’s going to experience the magnetic effect. Nearly all minerals that are magnetic have iron as a component.


Please login or register to read the rest of this content.

Your goal is to identify samples according to their reactivity with acid. Minerals that react are called chemical rocks, and minerals that don’t are called clastic rocks. Some chemical rocks contain carbonate minerals, like limestone, dolomite, and marble which react with the acid.
Please login or register to read the rest of this content.


By the end of this lab, you will be able to line up rocks according to how hard they are by using a specific scale. The scale goes from 1 to 10, with 10 being the hardest minerals.
Please login or register to read the rest of this content.


You will be able to identify minerals by their colors and streaks, and be able to tell a sample of real gold from the fake look-alike called pyrite.


Please login or register to read the rest of this content.

Geodes are formed from gas bubbles in flowing lava. Up close, a geode is a crystallized mineral deposit that is usually very dull and ordinary-looking on the outside.  When you crack open a geode, however, it’s like being inside a crystal cave.  We’ll use an eggshell to simulate a gas bubble in flowing lava.


We’re going to dissolve alum in water and place the solution into an eggshell. In real life, minerals are dissolved in groundwater and placed in a gas bubble pocket.  In both cases, you will be left with a geode.


Note: These crystals are not for eating, just for looking.


Please login or register to read the rest of this content.



We’re going to take two everyday materials, salt and vinegar, and use them to grow crystals by creating a solution and allowing the liquids to evaporate.  These crystals can be dyed with food coloring, so you can grow yourself a rainbow of small crystals overnight.


The first thing you need to do is gather your materials.  You will need:


Please login or register to read the rest of this content.

Can we really make crystals out of soap?  You bet!  These crystals grow really fast, provided your solution is properly saturated.  In only 12 hours, you should have sizable crystals sprouting up.


You can do this experiment with either skewers, string, or pipe cleaners.  The advantage of using pipe cleaners is that you can twist the pipe cleaners together into interesting shapes, such as a snowflake or other design.  Make sure the shape fits inside your jar.


Please login or register to read the rest of this content.

penny-structureThe atoms in a solid, as we mentioned before, are usually held close to one another and tightly together. Imagine a bunch of folks all stuck to one another with glue. Each person can wiggle and jiggle but they can’t really move anywhere.


Atoms in a solid are the same way. Each atom can wiggle and jiggle but they are stuck together. In science, we say that the molecules have strong bonds between them. Bonds are a way of describing how atoms and molecules are stuck together.


There’s nothing physical that actually holds them together (like a tiny rope or something). Like the Earth and Moon are stuck together by gravity forces, atoms and molecules are held together by nuclear and electromagnetic forces. Since the atoms and molecules come so close together they will often form crystals.


Try this experiment and then we will talk more about this:
Please login or register to read the rest of this content.


Crystals are formed when atoms line up in patterns and solidify.  There are crystals everywhere — in the form of salt, sugar, sand, diamonds, quartz, and many more!


To make crystals, you need to make a very special kind of solution called a supersaturated solid solution.  Here’s what that means: if you add salt by the spoonful to a cup of water, you’ll reach a point where the salt doesn’t disappear (dissolve) anymore and forms a lump at the bottom of the glass.


The point at which it begins to form a lump is just past the point of saturation. If you heat up the saltwater, the lump disappears.  You can now add more and more salt, until it can’t take any more (you’ll see another lump starting to form at the bottom).  This is now a supersaturated solid solution.  Mix in a bit of water to make the lump disappear.  Your solution is ready for making crystals.  But how?


Please login or register to read the rest of this content.

When you hear the word “bacteria” what do you think of? If you’re like most people, you probably think of things that can make you sick. Although some bacteria do make us sick, this is not true for all of them. In fact, as we’ll see a little later, some bacteria are very helpful.


Did you know that bacteria can have a virus? It’s true! But first, you might be wondering: what’s the difference between viruses and bacteria?


Bacteria grows and reproduces on its own, while viruses cannot exist or reproduce without being in a living cell of a plant, animal, or even bacteria. Size-wise, bacteria are enormous.


Please login or register to read the rest of this content.

Bacteria have a bad reputation. Walk down the cleaning aisle of any store and you’ll see rows and rows of products promising to kill them. There are definitely some bacteria that cause problems for people, and we’ll talk about them soon, but we are going to start off positive, and talk about the many ways bacteria can be helpful.


First, decomposers help control waste. Without these bacteria, the amount of waste in soil would quickly make the soil a place where nothing could grow. Bacteria are even used in sewage treatment plants to treat our waste. Decomposers also help provide organisms with nitrogen, as was discussed earlier.


Please login or register to read the rest of this content.

Ah-chooo! Influenza (the “flu”) is when you get chills, fever, sore throat, muscle pains, headaches, coughing, and feel like all you want to do is lie in bed. The flu is often confused with the common cold, but it’s a totally different (and more severe) virus.


The flu is passed from person to person (or animals or birds) by coughing or sneezing. With plants, it’s transmitted through the sap via insects. In the case of birds and animals, the flu is usually transmitted by touching their droppings, which is why hand-washing is so important! In addition to soap, the flu virus can be inactivated by sunlight, disinfectants and detergents.


Please login or register to read the rest of this content.

One place where bacteria can be found is on your teeth. This is why it’s so important to brush well. Don’t believe me? Then this experiment is for you. You’ll need to gather your materials and make sure you have a toothbrush and microscope nearby.


This is important because prokaryotes are incredibly common and have a huge impact on our lives.  You may already know some of the ways bacteria can be harmful to you, and this is certainly important information.  Scientists have used knowledge of prokaryotes to create medications, vaccines, and healthy living habits that have led to a healthier life for billions of people.


Please login or register to read the rest of this content.

Some organisms, like bacteria, consist of only one cell. Other organisms, like humans, consist of trillions of specialized cells working together. Even if organisms look very different from each other, if you look close enough you’ll see that their cells have much in common.


Most cells are so tiny that you can’t see them without the help of a microscope. The microscopes that students typically use at school are light microscopes.


Robert Hooke created a primitive light microscope in 1665 and observed cells for the very first time. Although the light microscope opened our eyes to the existence of cells, they are not useful for looking at the tiniest components of cells. Many structures in the cell are too small to see with a light microscope.
Please login or register to read the rest of this content.


If you have ever seen mold growing on an old loaf of bread or eaten a mushroom, you have encountered a fungus. Fungi (that’s the plural of fungus) are a group of organisms, or living things, that are all around us. Mold on bread and mushrooms on pizza are both examples of fungi.


Fungi have an important job. They help break down other material, so that living things are able to grow in soil. This helps make nutritious foods for other organisms. Fungi are needed for life!


Do you think mushrooms are plants? Scientists used to think that all fungi were plants. Now they know that there are some very important different between these two groups of organisms. One of the most important differences is that plants are autotrophic. This means that they can make their own food, just by using the sunlight. Fungi can’t do this. They have to “eat” other living things in order to get the energy they need. This is called being heterotrophic.


Please login or register to read the rest of this content.

Art and science meet in a plant press. Whether you want to include the interesting flora you find in your scientific journal, or make a beautiful handmade greeting card, a plant press is invaluable. They are very cheap and easy to make, too!


Please login or register to read the rest of this content.

Here we’re going to discuss the differences between three types of worms; flatworms, roundworms, and segmented worms. The word “worm” is not, in fact, a scientific name. It’s an informal way of classifying animals with long bodies and no appendages (no including snakes). They are bilaterally symmetrical (the right and left sides mirror each other). Worms live in salt and fresh water, on land, and inside other organisms as parasites.


The differences between the three types of worms we will discuss depend on the possession of a body cavity and segments. Flatworms have neither a body cavity nor segments. Roundworms only have a body cavity, and segmented worms have both a body cavity and segments.


Flatworms (Phylum Platyhelminthes) have incomplete digestive systems. That means that their digestive system has only one opening. The gas exchange occurs on the surface of their bodies. There are no blood vessels or nervous systems in flatworms. Some are non-parasitic, like the Sea flat worm, and some are parasitic, like the tapeworm.



Please login or register to read the rest of this content.

How does salt affect plant growth, like when we use salt to de-ice snowy winter roads? How does adding fertilizer to the soil help or hurt the plants? What type of soil best purifies the water? All these questions and more can be answered by building a terrarium-aquarium system to discover how these systems are connected together.


Please login or register to read the rest of this content.

It drives me crazy it when my store-bought tomatoes go straight from unripe to mush. After talking with local farmers in my area, I discovered a few things that might help you enjoy this fruit without sacrificing taste and time.


Grocery store owners know that their products are very perishable. If the tomatoes arrive ripe, they might start to rot before they can get on the shelf for the customer. Ripe tomatoes are near impossible to transport, which means that farmers often pick unripe (green and therefore very firm) tomatoes to put on the truck. Grocery stores prefer hard, unripe tomatoes so their customers can get them home safely.


The problem is, how do you enjoy a tomato if it’s not ready?


Scientists and food experts ripen tomatoes quickly with ethylene while they are in storage. As the gas surrounds the green tomato, it chemical reacts to speed up the ripening process, causing the tomato to soften and change color to red or orange.


Please login or register to read the rest of this content.

Birds, people, plants, and microscopic organisms need to know where they are as well as where they want to be. Birds migrate each year and know which way is south, and plants detect the sun so they can angle their leaves properly. People consult a map or GPS to figure out where they are.


Magnetotactic bacteria orients itself along magnetic field lines, whether from a nearby magnet or the Earth’s magnetic field. It’s like having a built-in internal compass.


Please login or register to read the rest of this content.

Fungi and protists, including mold, moss, yeast, and mushrooms, are found all around us. One common group of fungi is mold. Mold, like all fungi, are heterotrophs, which means they rely on other living things for their energy. This is different than an autotroph like a plant, which gets its energy from the sun.


Mold commonly grows on bread, getting food from this source. What do you think makes mold grow? Being in a dark place? Being exposed to moisture? Something else? The scientific method is a series of steps some scientists use to answer question and solve problems. To conduct an experiment based on the scientific method, you must have a control sample, which has nothing done to it, and several experimental samples, which have changes made to them. You can then observe results in the experimental sample to see how your changes to them affect results.


Please login or register to read the rest of this content.

Living things are all around us.  Sometimes the living things we notice the most are animals, whether its birds chirping in the trees, our pet dogs, or even our fellow human beings.  However, most living things are not animals - they include bacteria, archae, fungi, protists, and plants.  These organisms are extremely important to learn about.  They make life possible for animals, including human beings, by keeping soil ready for growth, and providing oxygen for our survival.  No life would be possible without these remarkable organisms. The prokaryotes, bacteria and archaea represent an amazingly diverse group of organisms only visible when one looks under a microscope. These single-celled organisms obtain energy and reproduce in a variety of ways. Though some bacteria are harmful, causing disease, many are very helpful, providing the nitrogen we need to live and aiding in digestion. Archaea have been found in some of the most extreme environments on the planets, including environments that are remarkably hot or salty. Please login or register to read the rest of this content.