solarboatSolar energy (power) refers to collecting this energy and storing it for another use, like driving a car. The sun blasts 174 x 1015 watts (which is 174,000,000,000,000,000 watts) of energy through radiation to the earth, but only 70% of that amount actually makes it to the surface. And since the surface of the earth is mostly water, both in ocean and cloud form, only a small fraction of the total amount makes it to land.


A solar cell converts sunlight straight into electricity. Most satellites are powered by large solar panel arrays in space, as sunlight is cheap and readily available out there. While solar cells seem ‘new’ and modern today, the first ones were created in the 1880s, but were a mere 1% efficient. (Today, they get as high as 35%.) A solar cell’s efficiency is a measure of how much sunlight the cell converts into electrical energy.


We’re going to use solar cells and the basic ideas from Unit 10 (Electricity & Robotics) to build a solar-powered race car.  You’ll need to find these items below.  Note – if you have trouble locating parts, check the shopping list for information on how to order it straight from us.


  • Solar cell
  • Solar motor
  • Foam block (about 6” long)
  • Alligator clip leads
  • 2 straws (optional)
  • 2 wooden skewers (optional)
  • 4 milk jug lids or film can tops
  • Set of gears, one of which fits onto your motor shaft (most solar motor kits come with a set), or rip a set out of an old toy

Here’s what you do:


Please login or register to read the rest of this content.

841958


Believe it or not, most of the electricity you use comes from moving magnets around coils of wire! Wind turbines spin big coils of wire around very powerful magnets (or very powerful magnets around big coils of wire) by capturing the flow.


Here’s how it works: when a propeller is placed in a moving fluid (like the water from your sink or wind from your hair dryer), the propeller turns. If you attach the propeller to a motor shaft, the motor will rotate, which has coils of wire and magnets inside. The faster the shaft turns, the more the magnets create an electrical current.


The electricity to power your computer, your lights, your air conditioning, your radio or whatever, comes from spinning magnets or wires! Refer to Unit 11 for more detail about how moving magnets create electricity.


We’re going to build a wind turbine that will actually give you different amounts of electricity depending on which way your propeller is facing. Ready?


You’ll need to find these items below.  Note – if you have trouble locating parts, check the shopping list for information on how to order it straight from us.


  • A digital Multimeter
  • Alligator clip leads
  • 1.5-3V DC Motor
  • 9-18VDC Motor
  • Bi-polar LED
  • Foam block (about 6” long)
  • Propeller from old toy or cheap fan, or balsa wood airplane

Here’s what you do:


Please login or register to read the rest of this content.

Do you like marshmallows cooked over a campfire? What if you don’t have a campfire, though? We’ll solve that problem by building our own food roaster – you can roast hot dogs, marshmallows, anything you want. And it’s battery-free, as this device is powered by the sun.


NOTE: This roaster is powerful enough to start fires! Use with adult supervision and a fire extinguisher handy.


If you’re roasting marshmallows, remember that they are white – the most reflective color you can get.  If you coat your marshmallows with something darker (chocolate, perhaps?), your marshmallow will absorb the incoming light instead of reflecting it.


Here’s what you need to get:


  • 7×10” page magnifier (Fresnel lens)
  • Cardboard box, about a 10” cube
  • Aluminum foil
  • Hot glue, razor, scissors, tape
  • Wooden skewers (BBQ-style)
  • Chocolate, marshmallows, & graham crackers

Here’s what you do:



Download Student Worksheet & Exercises


How does it do that? The Fresnel lens is a lot like a magnifying glass.  In Unit 9, we learned how convex lenses are thicker in the middle (you can feel it with your fingers).  A Fresnel lens (first used in the 1800s to focus the beam in a lighthouse) has lots of ridges you can feel with your fingers.  It’s basically a series of magnifying lenses stacked together in rings (like in a tree trunk) to magnify an image.


The best thing about Fresnel lenses is that they are lightweight, so they can be very large (which is why light houses used these designs). Fresnel lenses curve to keep the focus at the same point, no matter close your light source is.


The Fresnel lens in this project is focusing the incoming sunlight much more powerfully than a regular hand held magnifier. But focusing the light is only part of the story with your roaster.  The other part is how your food cooks as the light hits it.  If your food is light-colored, it’s going to cook slower than darker (or charred) food. Notice how the burnt spots on your food heat up more quickly!


Scientifically Dissecting a Marshmallow

Plants take in energy (from the sun), water, and carbon dioxide (which is carbon and oxygen) and create sugar, giving off the oxygen. In other words: carbon + water + energy = sugar


  1. In this experiment, we will reverse this equation, by roasting a marshmallow, which is mostly sugar.
  2. When you roast your marshmallow, first notice the black color. This is the carbon.
  3. Next notice the heat and light given off. These are two forms of energy.
  4. Finally, put the roasting marshmallow if a mason jar. Notice that condensation forms on the sides. This is the water.

So, by roasting the marshmallow, we showed: sugar = carbon + water + energy!


Please login or register to read the rest of this content.

In 1920’s, these were a big hit. They were originally called “Putt Putt Steam Boats”, and were fascinating toys for adults and kids alike. We’ll be making our own version that will chug along for hours. This is a classic demonstration for learning about heat, energy, and how to get your kids to take a bath.



Here’s what you need to build your own:


  • Copper tubing (1/8”-1/4” dia x 12” long)
  • Votive candle
  • Foam block
  • Scissors or razor (with adult help)
  • Bathtub

Here’s what you need to do:



Download Student Worksheet & Exercises


  1. Wrap the copper tubing 2-3 times around a thick marker. You want to create a ‘coil’ with the tubing. Do this slowly so you don’t kink the tubing. End with two 3” parallel tails. (This is easier if you start in the middle of the tubing and work outwards in both directions.)
  2. Stick each tail through a block of foam. Bend the wires to they run along the length of the bottom of the boat, slightly pointed upwards. (You can also use a plastic bottle cut in half.)
  3. Position a votive candle on the topside of the boat and angle the coil so it sits right where the flame will be.
  4. To start your boat, fill the bathtub with water. While your tub fills, hold the tubing in the running water and completely fill the coil with water.
  5. Have your adult helper light the candle. In a moment, you should hear the ‘putt putt’ sounds of the boat working!
  6. Troubleshooting: if your boat doesn’t work, it could be a few things:
    1. The tubing has an air bubble. In this case, suck on one of the ends like a straw to draw in more water. Heating an air bubble will not make the boat move – it needs to be completely filled with water.
    2. Your coil is not hot enough. You need the water to turn into steam, and in order for this to happen, you have to heat the coil as hot as you can. Move the coil into a better position to get heat from the flame.
    3. The exhaust pipes are angled down. You want the stem to move up and out of your pipes, not get sucked back in. Adjust the exit tubing tails so they point slightly upwards.

How Do They Work? Your steam boat uses a votive candle as a heat source to heat the water inside the copper tubing (which is your boiling chamber). When the water is heated to steam, the steam pushes out the tube at the back with a small burst of energy, which pushes the boat forward.


Since your chamber is small, you only get a short ‘puff’ of energy. After the steam zips out, it creates a low pressure where it once was inside the tube, and this draws in fresh, cool water from the tub. The candle then heats this new water until steam and POP! it goes out the back, which in turn draws in more cool water to be heated… and on it goes. The ‘clicking’ or ‘putt putt’ noise you hear is the steam shooting out the back. This is go on until you either run out of water or heat.


Bonus! Here’s a video from a member that colored the water inside the pipe so they could see when it got pushed out! Note that the boat usually runs as fast as the first video on this page. The boats here are getting warmed up, ready to go, so they only do one or two puffs before they really start up.



Exercises Answer the questions below:


  1. Name three sources of renewable or alternative energy:
  2. Why is it important to look for renewable sources of energy?
  3. What is one example of a fossil fuel?
Please login or register to read the rest of this content.

This is the kind of energy most people think of when you mention ‘alternative energy’, and for good reason! Without the sun, none of anything you see around you could be here. Plants have known forever how to take the energy and turn it into usable stuff… so why can’t we?


The truth is that we can. While normally it takes factories the size of a city block to make a silicon solar cell, we’ll be making a copper solar cell after a quick trip to the hardware store. We’re going to modify the copper into a form that will allow it to react with sunlight the same way silicon does. The image shown here is the type of copper we’re going to make on the stovetop.


This solar cell is a real battery, and you’ll find that even in a dark room, you’ll be able to measure a tiny amount of current. However, even in bright sunlight, you’d need 80 million of these to light a regular incandescent bulb.


Please login or register to read the rest of this content.

This project is for advanced students.This Stirling Engine project is a very advanced project that requires skill, patience, and troubleshooting persistence in order to work right.  Find yourself a seasoned Do-It-Yourself type of adult (someone who loves to fix things or tinker in the garage) before you start working on this project,  or you’ll go crazy with nit-picky things that will keep the engine from operating correctly.  This makes an excellent project for a weekend.


Developed in 1810s, this engine was widely used because it was quiet and could use almost anything as a heat source. This kind of heat engine squishes and expands air to do mechanical work. There’s a heat source (the candle) that adds energy to your system, and the result is your shaft spins (CD).


This engine converts the expansion and compression of gases into something that moves (the piston) and rotates (the crankshaft). Your car engine uses internal combustion to generate the expansion and compression cycles, whereas this heat engine has an external heat source.


This experiment is great for chemistry students learning about Charles’s Law, which is also known as the Law of Volumes, which describes how gases tend to expand when they are heated and can be mathematically written like this:



where V = volume, and T = temperature. So as temperature increases, volume also increases. In the experiment you’re about to do, you will see how heating the air causes the diaphragm to expand which turns the crank.


Please login or register to read the rest of this content.

Galvanometers are coils of wire connected to a battery. When current flows through the wire, it creates a magnetic field. Since the wire is bundled up, it multiplies this electromagnetic effect to create a simple electromagnet that you can detect with your compass.
Please login or register to read the rest of this content.


I can still remember in 2nd grade science class wondering about this idea. And I still remember how baffled my teacher was when I asked her this question: “Doesn’t the north tip of a compass needle point to the south pole?” Think about this – if you hold up a magnet by a string, just like the needle of a compass, does the north end of the magnet line up with the north or south pole of the earth?


If you remember about magnets, you know that opposite attract. So the north tip of the compass will line up with the Earth’s SOUTH pole. So compasses are upside-down! Here’s an activity you can do right now…
Materials:


  • magnet
  • compass
  • string
Please login or register to read the rest of this content.

After you’ve completed the galvanometer experiment, try this one!


You can wrap wire around an iron core (like a nail), which will intensify the effect and magnetize the nail enough for you to pick up paperclips when it’s hooked up. See how many you can lift!


You can wrap the wire around your nail using a drill or by hand. In the picture to the left, there are two things wrong: you need way more wire than they have wrapped around that nail, and it does not need to be neat and tidy. So grab your spool and wrap as much as you can – the more turns you have around the nail, the stronger the magnet.


(We included this picture because there are so many like this in text books, and it’s quite misleading! This image is supposed to represent the thing you’re going to build, not be an actual photo of the finished product.)


Find these materials:


  • Batteries in a battery holder with alligator clip wires
  • A nail that can be picked up by a magnet
  • At least 3 feet of insulated wire (magnet wire works best but others will work okay)
  • Paper Clips
  • Masking Tape
  • Compass
Please login or register to read the rest of this content.

Have you noticed that stuff sticks to your motor?  If you drag your motor through a pile of paperclips, a few will get stuck to the side. What’s going on?


Inside your motor are permanent magnets (red and blue things in the photo) and an electromagnet (the copper thing wrapped around the middle). Normally, you’d hook up a battery to the two tabs (terminals) at the back of the motor, and your shaft would spin.


However, if you spin the motor shaft with your fingers, you’ll generate electricity at the terminals. But how is that possible? That’s what this experiment is all about.


Please login or register to read the rest of this content.

Want to see a really neat way to get magnetic fields to interact with each other? While levitating objects is hard, bouncing them in invisible magnetic fields is easy. In this video, you’ll see how you can take two, three, or even four magnets and have them perform for you.


Are you ready?


Materials:


  • 3 identical magnets
Please login or register to read the rest of this content.

Find a spare magnet – one you really don’t care about. Bring it up close to another magnet to find where the north and south poles are on the spare magnet. Did you find them? Mark the spots with a pen – put a N for north, and a S for south. Now break the spare magnet in half, separating the north from the south pole. (This might take a bit of muscle!) You should have one half be a north magnet, and the other a south. Or do you?


One of the big mysteries of the universe is why we can’t separate the north from the south end of a magnet. No matter how small you break that magnet down, you’ll still get one side that’s attracted to the north and the other that’s repelled. There’s just no way around this!


If you COULD separate the north from the south pole, you could point a magnet’s south pole toward your now-separated north pole, and it would always be repelled, no matter what orientation it rotated to. (Normally, as soon as the magnet is repelled, it twists around and lines up the opposite pole and snap! There go your fingers.) But if it were always repelled, you could chase it around the room or stick a pin through it so it would constantly move and rotate.


Well, what if we sneakily use electromagnetism? Note that you can use a metal screw, ball bearing, or other metal object that easily rotates.  If your metal ball bearing is also magnetic, you can combine both the screw and the magnet together.


Famous scientist Michael Faraday built the first one of these while studying magnetic and electricity, and how they both fit together. What to see what he figured out?


Here’s what you do:


Please login or register to read the rest of this content.

This is a quick and simple experiment to answer the question of magnetic field strength: Do four magnets have a stronger magnetic pull than one? You’ll find the answer quite surprising… which is: it depends. Here’s what you need to do to see for yourself:


Please login or register to read the rest of this content.

relay-bigThis experiment is for advanced students. If you’ve attempted the relay and telegraph experiment, you already know it’s one of the hardest ones in this unit, as the gap needs to be *just right* in order for it to work. It’s a super-tricky experiment that can leave you frustrated and losing hope that you’ll ever get the hang of this magnetism thing.


Fear not, young scientist! Here’s a MUCH simpler relay experiment that will actually give a nice blue spark when fired up, along with a nice zap to the hand that touches it in just the right spot. You can also use this relay in your electricity experiments as a switch you can use to turn things on and off using electricity (instead of your fingers moving a switch), including how to make a latching burglar alarm circuit.


Please login or register to read the rest of this content.

reed-switchWouldn’t it be cool to have an alarm sound each time someone opened your door, lunch box, or secret drawer? It’s easy when you use a reed switch in your circuit! All you need to do it substitute this sensor for the trip wire and you’ll have a magnetic burglar alarm.


The first thing you need to do is get your reed switch out, because we have to tear into it in order to get the part we need.  Here’s what you need:


Materials:


  • reed switch
  • magnet
  • LED
  • AA case
  • 2 alligator wires
  • 2 AA batteries
Please login or register to read the rest of this content.

shock6Relays are telegraphs, and they both are basically “electrical switches”. This means you can turn something on and off without touching it – you can use electricity to switch something else on or off!


We’re going to build our own relay that will attract a strip of metal to make our telegraph ‘click’ each time we energize the coil.


IMPORTANT! This experiment is very tricky to get working right. You’ll want to pair up with someone who’s handy in the workshop and has a keen eye and a feather touch for adjusting the clicker in the final step. Someone who is a patient, fix-it type of person will be able to help you get this project working well.


Note: There are bonus experiment ideas near the bottom once you’ve mastered this activity.


Please login or register to read the rest of this content.

dcmotorImagine you have two magnets. Glue one magnet on an imaginary record player (or a ‘lazy susan’ turntable) and hold the other magnet in your hand. What happens when you bring your hand close to the turntable magnet and bring the north sides together?


The magnet should repel and move, and since it’s on a turntable, it will circle out of the way. Now flip your hand over so you have the south facing the turntable. Notice how the turntable magnet is attracted to yours and rotates toward your hand. Just as it reaches your hand, flip it again to reveal the north side. Now the glued turntable magnet pushes away into another circle as you flip your magnet over again to attract it back to you. Imagine if you could time this well enough to get the turntable magnet to make a complete circle over and over again… that’s how a motor works!


This next activity mystifies even the most scientifically educated! Here’s what you need:


Materials:


  • magnet
  • magnet wire (26g works well)
  • D cell battery
  • two paper clips (try to find the ones shown in the video, or else bend your own with pliers)
  • sandpaper
  • fat rubber band
Please login or register to read the rest of this content.

We took our first step into the strange world of magnetism when we played with magnetizing a nail. We learned that magnets do what they do because of the behavior of electrons. When a bunch of those crazy little guys get going in the same direction they create a magnetic field. So what’s a magnetic field, you ask? That’s what this experiment is all about.


Please login or register to read the rest of this content.

Want to hear your magnets? We’re going to use electromagnetism to learn how you can listen to your physics lesson, and you’ll be surprised at how common this principle is in your everyday life. This project is for advanced students.


We’re going to invert the ideas used when we created our homemade speakers into a basic microphone. Although you won’t be able to record with this microphone, it will show you how the basics of a microphone and amplifier work, and how to turn sound waves back into electrical signals. You’ll be using the amplifier and your spare audio plug from the Laser Communicator for this project.


Please login or register to read the rest of this content.

We’re going to build on the quick ‘n’ easy DC motor to make a tiny rail accelerator (any larger, and you’ll need a power plant and a firing range and a healthy dose of ethics.) So let’s stick to the physics of what’s going on in this super-cool electromagnetism project. This project is for advanced students.


Here’s what we’re going to do:


We’re going to create two magnetic fields at right angles (perpendicular) to each other. When this happens, it causes things to move, spin, rotate, and roll out of the way. We’re going to focus this down to making a tiny set of wheel zip down a track powered only by magnetism. Ready?


Please login or register to read the rest of this content.

Marie Curie, a scientist famous for being the first person to receive two Nobel Prizes as well as her extensive work on radioactivity.

Magnetic material loses its ability to stick to a magnet when heated to a certain temperature called the Curie temperature. The Curie temperature for nickel is 380 oF, iron is 1,420oF, cobalt is 2,070 oF, and for ceramic ferrite magnets, it starts at 860oF.


We’re going to heat a magnet so that it loses temporarily loses its magnetic poles, and watch what happens as it cycles through cooling. Pierre and Marie Curie’s first scientific works were actually in magnetism, not chemistry, and their papers in magnetic fields and temperature when among the first noticed by the scientists at the time.


Are you ready to see what they figured out?


Please login or register to read the rest of this content.

gauss-rifleThere are two ways to create a magnetic field. First, you can wrap wire around a nail and attach the ends of the wire to a battery to make an electromagnet. When you connect the battery to the wires, current begins to flow, creating a magnetic field. However, the magnets that stick to your fridge are neither moving nor plugged into the electrical outlet – which leads to the second way to make a magnetic field: by rubbing a nail with a magnet to line up the electron spin. You can essential “choreograph” the way an electron spins around the atom to increase the magnetic field of the material. This project is for advanced students.


There are several different types of magnets. Permanent magnets are materials that stay magnetized, no matter what you do to it… even if you whack it on the floor (which you can do with a magnetized nail to demagnetize it). You can temporarily magnetize certain materials, such as iron, nickel, and cobalt. And an electromagnet is basically a magnet that you can switch on and off and reverse the north and south poles.


The strength of a magnetic field is measured in “Gauss”. The Earth’s magnetic field measures 0.5 Gauss. Typical refrigerator magnets are 50 Gauss. Neodymium magnets (like the ones we’re going to use in this project) measure at 2,000 Gauss. The largest magnetic fields have been found around distant magnetars (neutron stars with extremely powerful magnetic fields), measuring at 10,000,000,000,000,000 Gauss. (A neutron star is what’s left over from certain types of supernovae, and typically the size of Manhattan.)


Linear accelerators (also known as a linac) use different methods to move particles to very high speeds. One way is through induction, which is basically a pulsed electromagnet. We’re going to use a slow input speed and super-strong magnets and multiply the effect to generate a high-speed ball bearing to shoot across the floor.


For this experiment, you will need:
Please login or register to read the rest of this content.


An electrical circuit is like a raceway or running track at school.  The electrons (racecars) zip around the race loop (wire circuit) superfast to make stuff happen. Although you can’t see the electrons zipping around the circuit, you can see the effects: lighting up LEDs, sounding buzzers, clicking relays, etc.


There are many different electrical components that make the electrons react in different ways, such as resistors (limit current), capacitors (collect a charge), transistors (gate for electrons), relays (electricity itself activates a switch), diodes (one-way street for electrons), solenoids (electrical magnet), switches (stoplight for electrons), and more.  We’re going to use a combination diode-light-bulb (LED), buzzers, and motors in our circuits right now.


A CIRCUIT looks like a CIRCLE.  When you connect the batteries to the LED with wire and make a circle, the LED lights up.  If you break open the circle, electricity (current) doesn’t flow and the LED turns dark.


LED stands for “Light Emitting Diode”.  Diodes are one-way streets for electricity – they allow electrons to flow one way but not the other.


Remember when you scuffed along the carpet?  You gathered up an electric charge in your body.  That charge was static until you zapped someone else.  The movement of electric charge is called electric current, and is measured in amperes (A). When electric current passes through a material, it does it by electrical conduction. There are different kinds of conduction, such as metallic conduction, where electrons flow through a conductor (like metal) and electrolysis, where charged atoms (called ions) flow through liquids.


Please login or register to read the rest of this content.

switch-zoomMake yourself a grab bag of fun things to test: copper pieces (nails or pipe pieces), zinc washers, pipe cleaners, Mylar, aluminum foil, pennies, nickels, keys, film canisters, paper clips, load stones (magnetic rock), other rocks, and just about anything else in the back of your desk drawer.


Certain materials conduct electricity better than others. Silver, for example, is one of the best electrical conductors on the planet, followed closely by copper and gold. Most scientists use gold contacts because, unlike silver and copper, gold does not tarnish (oxidize) as easily. Gold is a soft metal and wears away much more easily than others, but since most circuits are built for the short term (less than 50 years of use), the loss of material is unnoticeable.
Please login or register to read the rest of this content.


meterOne of the most useful tools a scientist can have! A digital multimeter can quickly help you discover where the trouble is in your electrical circuits and eliminate the hassle of guesswork. When you have the right tool for the job, it makes your work a lot easier (think of trying to hammer nails with your shoe).

We'll show you how to get the most out of this versatile tool that we're sure you're going to use all the way through college. This project is for advanced students.

Please login or register to read the rest of this content.


Imagine you have two magnets. Glue one magnet on an imaginary record player (or a ‘lazy susan’ turntable) and hold the other magnet in your hand. What happens when you bring your hand close to the turntable magnet and bring the north sides together?


The magnet should repel and move, and since it’s on a turntable, it will circle out of the way. Now flip your hand over so you have the south facing the turntable. Notice how the turntable magnet is attracted to yours and rotates toward your hand. Just as it reaches your hand, flip it again to reveal the north side. Now the glued turntable magnet pushes away into another circle as you flip your magnet over again to attract it back to you. Imagine if you could time this well enough to get the turntable magnet to make a complete circle over and over again… that’s how a motor works!


After you get the buzzer and the light or LED to work, try spinning a DC motor:


Please login or register to read the rest of this content.

By controlling how and when a circuit is triggered, you can easily turn a simple circuit into a burglar alarm – something that alerts you when something happens. By sensing light, movement, weight, liquids, even electric fields, you can trigger LEDs to light and buzzers to sound. Your room will never be the same.


Switches control the flow of electricity through a circuit. There are different kinds of switches. NC (normally closed) switches keep the current flowing until you engage the switch. The SPST and DPDT switches are NO (normally open) switches.


The pressure sensor we’re building is small, and it requires a fair amount of pressure to activate. Pressure is force (like weight) over a given area (like a footprint). If you weighed 200 pounds, and your footprint averaged 10” long and 2” wide, you’d exert about 5 psi (pounds per square inch) per foot.


However, if you walked around on stilts indeed of feet, and the ‘footprint’ of each stilt averaged 1” on each side, you’d now exert 100 psi per foot. Why such a difference?


The secret is in the area of the footprint. In our example, your foot is about 20 square inches, but the area of each stilt was only 1 square inch. Since you haven’t changed your weight, you’re still pushing down with 200 pounds, only in the second case, you’re pressing the same weight into a much smaller spot… and hence the pressure applied to the smaller area shoots up by a factor of 20.


So how do we use pressure in this experiment? When you squeeze the foam, the light bulb lights up! It’s ideal for under a doormat or carpet rug where lots of weight will trigger it.


Please login or register to read the rest of this content.

Once you’ve made the Pressure Sensor burglar alarm, you might be wondering how to make the alarm stay on after it has been triggered, the way the Trip Wire Sensor does.


The reason this isn’t as simple as it seems is that the trip wire is a normally closed (NC) switch while the pressure sensor is a normally open (NO) switch. This means that the trip wire is designed to allow current to flow through the tacks when there’s no paper insulating them, while the pressure sensor stops current flowing in it’s un-squished state. It’s just the nature of the two different types of switches.


However, we can build a circuit using a relay which will ‘latch on’ when activated and remain on until you reset the system (by cutting off the power). This super-cool latching circuit video will show you everything you need to know.
Please login or register to read the rest of this content.


Burglar alarms not only protect your stuff, they put the intruder into a panic while they attempt to disarm the triggered noisemaker.  Our burglar alarms are basically switches which utilize the circuitry from Basic Circuits and clever tricks in conductivity.


A complete and exhaustive description of electronics would jump into the physics of solid state electronics, which is covered in undergraduate university courses. Instead, here is a quick description based on the fluid analogy for electric charge:


The movement of electric charge is called electric current, and is measured in amperes (A, or amps). When electric current passes through a material, it does so by electrical conduction, but there are different kinds of conduction, such as metallic conduction (where electrons flow through a conductor, like metal) and electrolysis (where charged atoms (called ions) flow through liquids).


Why does metal conduct electricity? Metals are conductors not because electricity passes through them, but because they contain electrons that can move. Think of the metal wire like a hose full of water. The water can move through the hose.  An insulator would be like a hose full of cement – no charge can move through it.


Please login or register to read the rest of this content.

potSo now you know how to hook up a motor, and even wire it up to a switch so that it goes in forward and reverse. But what if you want to change speeds? This nifty electrical component will help you do just that.


Once you understand how to use this potentiometer in a circuit, you’ll be able to control the speed of your laser light show motors as well as the motors and lights on your robots. Ready?


Please login or register to read the rest of this content.

Using ocean water (or make your own with salt and water), you can generate enough power to light up your LEDs, sound your buzzers, and turn a motor shaft. We’ll be testing out a number of different materials such as copper, aluminum, brass, iron, silver, zinc, and graphite to find out which works best for your solution.


This project builds on the fruit battery we made in Unit 8. This experiment is for advanced students.


The basic idea of electrochemistry is that charged atoms (ions) can be electrically directed from one place to the other. If we have a glass of water and dump in a handful of salt, the NaCl (salt) molecule dissociates into the ions Na+ and Cl-.


When we plunk in one positive electrode and one negative electrode and crank up the power, we find that opposites attract: Na+ zooms over to the negative electrode and Cl- zips over to the positive. The ions are attracted (directed) to the opposite electrode and there is current in the solution.


Please login or register to read the rest of this content.

Have you wrapped your mind around static electricity yet? You should understand by now how scuffing along a carpet in socks builds up electrons, which eventually jump off in a flurry known as a spark. And you also probably know a bit about magnets and how magnets have north and south poles AND a magnetic field (more on this later). Did you also know that electrical charges have an electrical field, just like magnets do?


It’s easy to visualize a magnetic field, because you’ve seen the iron filings line up from pole to pole. But did you know that you can do a similar experiment with electric fields?


Here’s what you need:


  • dried dill (spice)
  • vegetable or mineral oil
  • 2 alligator wires
  • static electricity source (watch video first!)
Please login or register to read the rest of this content.

Never polish your tarnished silver-plated silverware again! Instead, set up a ‘silverware carwash’ where you earn a nickel for every piece you clean. (Just don’t let grandma in on your little secret!)


We’ll be using chemistry and electricity together (electrochemistry) to make a battery that reverses the chemical reaction that puts tarnish on grandma’s good silver.  It’s safe, simple, and just needs a grown-up to help with the stove.


Please login or register to read the rest of this content.

dmmIt’s easy to use chemistry to generate electricity, once you understand the basics. With this experiment, you’ll use aluminum foil, salt, air, and a chemical from an aquarium to create an air battery. This experiment is for advanced students.


Please login or register to read the rest of this content.

nerve-testerElectrical circuits are used for all kinds of applications, from blenders to hair dryers to cars. And games! Here’s a quick and easy game using the principles of conductivity.


This experiment is a test of your nerves and skill to see if you can complete the roller coaster circuit and make it from one end to the other.  You can opt to make a noisy version (more fun) or a silent version (for stealth). Are you ready?


Please login or register to read the rest of this content.

When an atom (like hydrogen) or molecule (like water) loses an electron (negative charge), it becomes an ion and takes on a positive charge. When an atom (or molecule) gains an electron, it becomes a negative ion. An electrolyte is any substance (like salt) that becomes a conductor of electricity when dissolved in a solvent (like water).


This type of conductor is called an ‘ionic conductor’ because once the salt is in the water, it helps along the flow of electrons from one clip lead terminal to the other so that there is a continuous flow of electricity.


This experiment is an extension of the Conductivity Tester experiment, only in this case we’re using water as a holder for different substances, like sugar and salt. You can use orange juice, lemon juice, vinegar, baking powder, baking soda, spices, cornstarch, flour, oil, soap, shampoo, and anything else you have around. Don’t forget to test out plain water for your ‘control’ in the experiment!


Please login or register to read the rest of this content.

You can use the idea that like charges repel (like two electrons) and opposites attract to move stuff around, stick to walls, float, spin, and roll. Make sure you do this experiment first.


I’ve got two different videos that use positive and negative charges to make things rotate, the first of which is more of a demonstration (unless you happen to have a 50,000 Volt electrostatic generator on hand), and the second is a homemade version on a smaller scale.


Did you know that you can make a motor turn using static electricity? Here’s how:


Please login or register to read the rest of this content.

fet1This simple FET circuit is really an electronic version of the electroscope. This “Alien Detector” is a super-sensitive static charge detector made from a few electronics parts. I originally made a few of these and placed them in soap boxes and nailed the lids shut and asked kids how they worked. (I did place a on/off switch poking through the box along with the LED so they would have ‘some’ control over the experiment.)


This detector is so sensitive that you can go around your house and find pockets of static charge… even from your own footprints! This is an advanced project for advanced students.


You will need to get:


Please login or register to read the rest of this content.

Hovercraft transport people and their stuff across ice, grass, swamp, water, and land. Also known as the Air Cushioned Vehicle (ACV), these machines use air to greatly reduce the sliding friction between the bottom of the vehicle (the skirt) and the ground. This is a great example of how lubrication works – most people think of oil as the only way to reduce sliding friction, but gases work well if done right.

In this case, the readily-available air is shoved downward by the pressure inside of balloon. This air flows down through the nozzle and out the bottom, under the CD, lifting it slightly as it goes and creating a thin layer for the CD to float on.

Although this particular hovercraft only has a 'hovering' option, I'm sure you can quickly figure out how to add a 'thruster' to make it zoom down the table! (Hint - you will need to add a second balloon!)

Here's what you need:

Please login or register to read the rest of this content.

Please login or register to read the rest of this content.


Polarization has to do with the direction of the light.  Think of a white picket fence – the kind that has space between each board.  The light can pass through the gaps int the fence but are blocked by the boards.  That’s exactly what a polarizer does.


When you have two polarizers, you can rotate one of the ‘fences’ a quarter turn so that virtually no light can get through – only little bits here and there where the gaps line up. Most of the way is blocked, though, which is what happens when you rotate the two pairs of sunglasses. Your sunglasses are polarizing filters, meaning that they only let light of a certain direction in. The view through the sunglasses is a bit dimmer, as less photons reach your eyeball.


Polarizing sunglasses also reduce darken the sky, which gives you more contrast between light and dark, sharpening the images. Photographers use polarizing filters to cut out glaring reflections.


Materials:


  • two pairs of polarized sunglasses
  • tape (the 3/4″ glossy clear kind works best – watch second video below)
  • window
Please login or register to read the rest of this content.

Crazy Remote

Want to have some quick science fun with your TV remote? Then try this experiment next time you flip on the tube:


Materials:


  • metal frying pan or cookie sheet
  • TV remote control
  • plastic sheet
Please login or register to read the rest of this content.

When light rays strikes a surface, part of the beam passes through the surface and the rest reflects back, like a ball bouncing on the ground. Where it bounces depends on how you throw the ball.


Have you ever looked into a pool of clear, still water and seen your own face? The surface of the water acts like a mirror and you can see your reflection. (In fact, before mirrors were invented, this was the only way people had to look at themselves.) If you were swimming below the surface, you’d still see your own face – the mirror effect works both ways.


Have you ever broken a pencil by sticking it into a glass of water?  The pencil isn’t really broken, but it sure looks like it!  What’s going on?


Please login or register to read the rest of this content.

We’re going to bend light to make objects disappear. You’ll need two glass containers (one that fits inside the other), and the smaller one MUST be Pyrex. It’s okay if your Pyrex glass has markings on the side. Use cooking oil such as canola oil, olive oil, or others to see which makes yours truly disappear. You can also try mineral oil or Karo syrup, although these tend to be more sensitive to temperature and aren’t as evenly matched with the Pyrex as the first choices mentioned above.


Here’s what you need:


  • two glass containers, one of which MUST be Pyrex glass
  • vegetable oil (cheap canola brand is what we used in the video)
  • sink

Published value for light speed is 299,792,458 m/s = 186,282 miles/second = 670,616,629 mph
Please login or register to read the rest of this content.


Hans Lippershey was the first to peek through his invention of the refractor telescope in 1608, followed closely by Galileo (although Galileo used his telescope for astronomy and Lippershey’s was used for military purposes).  Their telescopes used both convex and concave lenses.

A few years later, Kepler swung into the field and added his own ideas: he used two convex lenses (just like the ones in a hand-held magnifier), and his design the one we still use today. We're going to make a simple microscope and telescope using two lenses, the same way Kepler did.  Only our lenses today are much better quality than the ones he had back then!

You can tell a convex from a concave lens by running your fingers gently over the surface – do you feel a “bump” in the middle of your hand magnifying lens?  You can also gently lay the edge of a business card (which is very straight and softer than a ruler) on the lens to see how it doesn't lay flat against the lens.

Your magnifier has a convex lens – meaning the glass (or plastic) is thicker in the center than around the edges.  The image here shows how a convex lens can turn light to a new direction using refraction. You can read more about refraction here.

A microscope is very similar to the refractor telescope with one simple difference – where you place the focus point.  Instead of bombarding you with words, let’s make a microscope right now so you can see for yourself how it all works together. Are you ready?

Please login or register to read the rest of this content.


spectrometer2Spectrometers are used in chemistry and astronomy to measure light. In astronomy, we can find out about distant stars without ever traveling to them, because we can split the incoming light from the stars into their colors (or energies) and “read” what they are made up of (what gases they are burning) and thus determine their what they are made of. In this experiment, you’ll make a simple cardboard spectrometer that will be able to detect all kinds of interesting things!


SPECIAL NOTE: This instrument is NOT for looking at the sun. Do NOT look directly at the sun. But you can point the tube at a sheet of paper that has the sun’s reflected light on it.


Usually you need a specialized piece of material called a diffraction grating to make this instrument work, but instead of buying a fancy one, why not use one from around your house?  Diffraction gratings are found in insect (including butterfly) wings, bird feathers, and plant leaves.  While I don’t recommend using living things for this experiment, I do suggest using an old CD.


CDs are like a mirror with circular tracks that are very close together. The light is spread into a spectrum when it hits the tracks, and each color bends a little more than the last. To see the rainbow spectrum, you’ve got to adjust the CD and the position of your eye so the angles line up correctly (actually, the angles are perpendicular).


You’re looking for a spectrum (the rainbow image at left) – this is what you’ll see right on the CD itself. Depending on what you look at (neon signs, chandeliers, incandescent bulbs, fluorescent bulbs, Christmas lights…), you’ll see different colors of the rainbow. For more about how diffraction gratings work, click here.


Materials:


  • old CD
  • razor
  • index card
  • cardboard tube
Please login or register to read the rest of this content.

This is the simplest form of camera – no film, no batteries, and no moving parts that can break. The biggest problem with this camera is that the inlet hole is so tiny that it lets in such a small amount of light and makes a faint image. If you make the hole larger, you get a brighter image, but it’s much less focused. The more light rays coming through, the more they spread out the image out more and create a fuzzier picture. You’ll need to play with the size of the hole to get the best image.


While you can go crazy and take actual photos with this camera by sticking on a piece of undeveloped black and white film (use a moderately fast ASA rating), I recommend using tracing paper and a set of eyeballs to view your images. Here’s what you need to do:


Materials:


  • box
  • tracing paper
  • razor or scissors
  • tape
  • tack
Please login or register to read the rest of this content.

Here’s a trick question – can you make the color “yellow” with only red, green, and blue as your color palette?  If you’re a scientist, it’s not a problem.  But if you’re an artist, you’re in trouble already.


The key is that we would be mixing light, not paint.  Mixing the three primary colors of light gives white light.  If you took three light bulbs (red, green, and blue) and shined them on the ceiling, you’d see white.  And if you could magically un-mix the white colors, you’d get the rainbow (which is exactly what prisms do.)


If you’re thinking yellow should be a primary color – it is a primary color, but only in the artist’s world.  Yellow paint is a primary color for painters, but yellow light is actually made from red and green light.  (Easy way to remember this: think of Christmas colors – red and green merge to make the yellow star on top of the tree.)


As a painter, you know that when you mix three cups of red, green, and blue paint, you get a muddy brown. But as a scientist, when you mix together three cups of cold light, you get white.  If you pass a beam white light through a glass filled with water that’s been dyed red, you’ve now got red light coming out the other side.  The glass of red water is your filter.  But what happens when you try to mix the different colors together?


The cold light is giving off its own light through a chemical reaction called chemiluminescence, whereas the cups of paint are only reflecting nearby light. It’s like the difference between the sun (which gives off its own light) and the moon (which you see only when sunlight bounces off it to your eyeballs). You can read more about light in our Unit 9: Lesson 1 section.


Here’s what you need:


Please login or register to read the rest of this content.

When you warm up leftovers, have you ever wondered why the microwave heats the food and not the plate? (Well, some plates, anyway.) It has to do with the way microwave ovens work.


Microwave ovens use dielectric heating (or high frequency heating) to heat your food. Basically, the microwave oven shoots light beams that are tuned to excite the water molecule. Foods that contain water will step up a notch in energy levels as heat. (The microwave radiation can also excite other polarized molecules in addition to the water molecule, which is why some plates also get hot.)


One of the biggest challenges with measuring the speed of light is that the photons move fast… too fast to watch with our eyeballs.  So instead, we’re going to watch the effects of microwave light and base our measurements on the effects the light has on different kinds of food.  Microwaves use light with a wavelength of 0.01 to 10 cm (that’s ‘microwave’ part of the electromagnetic spectrum). When designing your experiment, you’ll need to pay close attention to the finer details such as the frequency of your microwave oven (found inside the door), where you place your food inside the oven, and how long you leave it in for.


Materials:


  • chocolate bar (extra-large bars work best)
  • microwave
  • plate
  • ruler
  • calculator
  • pencil and paper
Please login or register to read the rest of this content.

ss-lwImagine you’re a painter.  What three colors do you need to make up any color in the universe?  (You should be thinking: red, yellow, and blue… and yes, you are right if you’re thinking that the real primary colors are cyan, magenta, and yellow, but some folks still prefer to think of the primary colors as red-yellow-blue… either way, it’s really not important to this experiment which primary set you choose.)


Here’s a trick question – can you make the color “yellow” with only red, green, and blue as your color palette?  If you’re a scientist, it’s not a problem.  But if you’re an artist, you’re in trouble already.


The key is that we would be mixing light, not paint.  Mixing the three primary colors of light gives white light.  If you took three light bulbs (red, green, and blue) and shined them on the ceiling, you’d see white.  And if you could magically un-mix the white colors, you’d get the rainbow (which is exactly what prisms do.)


If you’re thinking yellow should be a primary color – it is a primary color, but only in the artist’s world.  Yellow paint is a primary color for painters, but yellow light is actually made from red and green light.  (Easy way to remember this: think of Christmas colors – red and green merge to make the yellow star on top of the tree.) It’s because you are using projection of light, not the subtrative combination of colors to get this result.


Here’s a nifty experiment that will really bring these ideas to life (and light!):


Materials:


  • flashlight (three is best, but you can get by with two)
  • fingernail polish (red, green, and blue)
  • clear tape or cellophane (saran wrap works too)
  • white wall space
Please login or register to read the rest of this content.

When I was in grad school, I needed to use an optical bench to see invisible things. I was trying to ‘see’ the exhaust from a  new kind of F15 engine, because the aircraft acting the way it shouldn’t – when the pilot turned the controls 20o left, the plane only went 10o. My team had traced the problem to an issue with the shock waves, and it was my job to figure out what the trouble was. (Anytime shock waves appear, there’s an energy loss.)


Since shock waves are invisible to the human eye, I had to find a way to make them visible so we could get a better look at what was going on. It was like trying to see the smoke generated by a candle – you know it’s there, but you just can’t see it. I wound up using a special type of photography called Schlieren.


An optical table gives you a solid surface to work on and nails down your parts so they don’t move. This is an image taken with Schlieren photography. This technique picks up the changes in air density (which is a measure of pressure and volume).


The air above a candle heats up and expands (increases volume), floating upwards as you see here. The Schlieren technique shines a super-bright xenon arc lamp beam of light through the candle area, bounces it off two parabolic mirrors and passes it through a razor-edge slit and a neutral density filter before reaching the camera lens. With so many parts, I needed space to bolt things down EXACTLY where I wanted them. The razor slit, for example, just couldn’t be anywhere along the beam – it had to be right at the exact point where the beam was focused down to a point.


I’m going to show you how to make a quick and easy optical lab bench to work with your lenses. Scientists use optical benches when they design microscopes, telescopes, and other optical equipment. You’ll need a bright light source like a flashlight or a sunny window, although this bench is so light and portable that you can move it to garage and use a car headlight if you really want to get creative. Once your bench is set up, you can easily switch out filters, lenses, and slits to find the best combination for your optical designs. Technically, our setup is called an optical rail, and the neat thing about it is that it comes with a handy measuring device so you can see where the focal points are for your lenses. Let’s get started:
Please login or register to read the rest of this content.


benham1Charles Benhamho (1895) created a toy top painted with the pattern (images on next page). When you spin the disk, arcs of color (called “pattern induced flicker colors”) show up around the disk. And different people see different colors!


We can’t really say why this happens, but there are a few interesting theories. Your eyeball has two different ways of seeing light: cones and rods. Cones are used for color vision and for seeing bright light, and there are three types of cones (red, green, and blue). Rods are important for seeing in low light.


One possibility is… Please login or register to read the rest of this content.


In this experiment, water is our prism. A prism un-mixes light back into its original colors of red, green, and blue. You can make prisms out of glass, plastic, water, oil, or anything else you can think of that allows light to zip through.


What’s a prism? Think  of a beam of light.  It zooms fast on a straight path, until it hits something (like a water drop).  As the light goes through the water drop, it changes speed (refraction). The speed change depends on the angle that the light hits the water, and what the drop is made of.  (If it was a drop of mineral oil, the light would slow down a bit more.) Okay, so when white light passes through a prism (or water drop), changes speed, and turns colors.  So why do we see a rainbow, not just one color coming out the other side?


Please login or register to read the rest of this content.

In a simplest sense, a kaleidoscope is a tube lined with mirrors. Whether you leave the end opened or tape on a bag of beads is up to you, but the main idea is to provide enough of an optical illusion to wow your friends. Did you know that by changing the shape and size of the mirrors, you can make the illusion 3D?


If you use only two mirrors, you’ll get a solid background, but add a third mirror and tilt together into a triangle (as shown in the video) and you’ll get the entire field filled with the pattern. You can place transparent objects at the end (like marbles floating in water or mineral oil) or just leave it open and point at the night stars.


The first kaleidoscopes were constructed in 1816 by a scientist while studying polarization. They were quickly picked up as an amusement gadget by the public and have stayed with us ever since.


Materials:


  • three mirrors the same size
  • tape and scissors
Please login or register to read the rest of this content.

There are three primary colors of light are red, green, and blue.  The three primary colors of paint are red, yellow, and blue (I know it’s actually cyan, yellow, and magenta, which we’ll get to in more detail later, but for now just stick with me and think of the primary colors of paint as red-yellow-blue and I promise it will all make sense in the end).


Most kids understand how yellow paint and blue paint make green paint, but are totally stumped when red light and green light mix to make yellow light. The difference is that we’re mixing light, not paint.


Lots of science textbooks still have this experiment listed under how to mix light: “Stir together one of red water and one glass of green water (dyed with food coloring) to get a glass of yellow water.” Hmmm… the result I get is a yucky greenish-brown color. What happened?


The reason  you can’t mix green and red water to get yellow is that you’re essentially still mixing paint, not light. But don’t take our word for it – test it out for yourself with this super-fast light experiment on mixing colors.


Materials:


  • pair of scissors
  • crayons
  • sharp wood pencil or wood skewer
  • index cards
  • drill (optional)
Please login or register to read the rest of this content.

Ever play with a prism? When sunlight strikes the prism, it gets split into a rainbow of colors. Prisms un-mix the light into its different wavelengths (which you see as different colors). Diffraction gratings are tiny prisms stacked together.


When light passes through a diffraction grating, it splits (diffracts) the light into several beams traveling at different directions. If you’ve ever seen the ‘iridescence’ of a soap bubble, an insect shell, or on a pearl, you’ve seen nature’s diffraction gratings.


Scientist use these things to split incoming light so they can figure out what fuels a distant star is burning. When hydrogen burns, it gives off light, but not in all the colors of the rainbow, only very specific colors in red and blue. It’s like hydrogen’s own personal fingerprint, or light signature.


Astronomers can split incoming light from a star using a spectrometer (you can build your own here) to figure out what the star is burning by matching up the different light signatures.


Materials:


  • feather
  • old CD or DVD
Please login or register to read the rest of this content.

By using lenses and mirrors, you can bounce, shift, reflect, shatter, and split a laser beam. Since the laser beam is so narrow and focused, you’ll be able to see several reflections before it fades away from scatter. Make sure you complete the Laser Basics experiment first before working with this experiment.


You’ll need to make your beam visible for this experiment to really work.  There are several different ways you can do this:


Please login or register to read the rest of this content.

This is a super-cool and ultra-simple circuit experiment that shows you how a CdS (cadmium sulfide cell) works. A CdS cell is a special kind of resistor called a photoresistor, which is sensitive to light.

A resistor limits the amount of current (electricity) that flows through it, and since this one is light-sensitive, it will allow different amounts of current through depends on how much light it "sees".

Photoresistors are very inexpensive light detectors, and you'll find them in cameras, street lights, clock radios, robotics, and more. We're going to play with one and find out how to detect light using a simple series circuit.

Materials:

  • AA battery case with batteries
  • one CdS cell
  • three alligator wires
  • LED (any color and type)

Please login or register to read the rest of this content.

This is a super-cool and ultra-simple circuit experiment that shows you how a CdS (cadmium sulfide cell) works. A CdS cell is a special kind of resistor called a photoresistor, which is sensitive to light.

A resistor limits the amount of current (electricity) that flows through it, and since this one is light-sensitive, it will allow different amounts of current through depends on how much light it "sees".

Photoresistors are very inexpensive light detectors, and you'll find them in cameras, street lights, clock radios, robotics, and more. We're going to play with one and find out how to detect light using a simple series circuit.

Materials:

  • AA battery case with batteries
  • one CdS cell
  • three alligator wires
  • LED (any color and type)

Please login or register to read the rest of this content.


Ever notice how BRIGHT your white t-shirt looks in direct sun? That’s because mom washed with fluorescent laundry soap (no kidding!). The soap manufacturers put in dyes that glow white under a UV light, which make your clothes appear whiter than they really are.


Since light is a form of energy, in order for things to glow in the dark, you have to add energy first. So where does the energy come from? There are are few different ways to do this:


Please login or register to read the rest of this content.

This is a beefier-version of the Electric Eye that will be able to turn on a buzzer instead of a LED by increasing the voltage in the circuit. This type of circuit is a light-actuated circuit. When a beam of light hits the sensor (the "eye"), a buzzer sounds. Use this to indicate when a door closes or drawer closes... your suspect will never know what got triggered.
Please login or register to read the rest of this content.


ss-laserWhat happens when you shine a laser beam onto a spinning mirror? In the Laser Maze experiment, the mirrors stayed put. What happens if you took one of those mirrors and moved it really fast?


It turns out that a slightly off-set spinning mirror will make the laser dot on the wall spin in a circle.  Or ellipse. Or oval.  And the more mirrors you add, the more spiro-graph-looking your projected laser dot gets.


Why does it work? This experiment works because of imperfections: the mirrors are mounted off-center, the motors wobble, the shafts do not spin true, and a hundred other reasons why our mechanics and optics are not dead-on straight.   And that’s exactly what we want – the wobbling mirrors and shaky motors make the pretty pictures on the wall!  If everything were absolutely perfectly aligned, all you would see is a dot.


Here’s how to do this experiment:


Please login or register to read the rest of this content.

Please login or register to read the rest of this content.


So you’ve played with lenses, mirrors, and built an optical bench. Want to make a real telescope? In this experiment, you’ll build a Newtonian and a refractor telescope using your optical bench.


Materials:


  • optical bench
  • index card or white wall
  • two double-convex lenses
  • concave mirror
  • popsicle stick
  • mirror
  • paper clip
  • flash light
  • black garbage bag
  • scissors or razor
  • rubber band
  • wax paper
  • hot glue
Please login or register to read the rest of this content.

xtal3In addition to laser experiments, I thought you’d like to learn how to pick up sound that’s traveling on a light wave. A crystal radio is among the simplest of radio receivers – there’s no battery or power source, and nearly no moving parts. The source of power comes directly from the radio waves (which is a low-power, low frequency light wave) themselves.


The crystal radio turns the radio signal directly into a signal that the human ear can detect. Your crystal radio detects in the AM band that have been traveling from stations (transmitters) thousands of miles away. You’ve got all the basics for picking up AM radio stations using simple equipment from an electronics store. I’ll show you how…


The radio is made up of a tuning coil (magnet wire wrapped around a toilet paper tube), a detector (germanium diode) and crystal earphones, and an antenna wire.


One of the biggest challenges with detecting low-power radio waves is that there is no amplifier on the radio to boost the signal strength. You’ll soon figure out that you need to find the quietest spot in your house away from any transmitters (and loud noises) that might interfere with the reception when you build one of these.


One of things you’ll have is to figure out the best antenna length to produce the clearest, strongest radio signal in your crystal radio. I’m going to walk you through making three different crystal radio designs.


You’ll need to find these items below.


Here’s what you do:


Please login or register to read the rest of this content.

UV (ultra-violet) light is invisible, which means you need more than your naked eyeball to do experiments with it. Our sun gives off light in the UV. Too much exposure to the sun and you’ll get a sunburn from the UV rays.


There are many different experiments you can do with UV detecting materials, such as color-changing UV beads and UV nail polish.


Here are a few fun activities you can do with your UV detecting materials:


Please login or register to read the rest of this content.

An average can of soda at room temperature measures 55 psi before you ever crack it open. (In comparison, most car tires run on 35 psi, so that gives you an idea how much pressure there is inside the can!)


If you heat a can of soda, you’ll run the pressure over 80 psi before the can ruptures, soaking the interior of your house with its sugary contents. Still, you will have learned something worthwhile: adding energy (heat) to a system (can of soda) causes a pressure increase. It also causes a volume increase (kaboom!).
How about trying a safer variation of this experiment using water, an open can, and implosion instead of explosion?


Materials – An empty soda can, water, a pan, a bowl, tongs, and a grown-up assistant.


NOTE: If you can get a hold of one, use a beer can – they tend to work better for this experiment. But you can also do this with a regular old soda can. And no, I am not suggesting that kids should be drinking alcohol! Go ask a parent to find you one – and check the recycling bin.


Please login or register to read the rest of this content.

If you’ve ever burped, you know that it’s a lot easier to do after chugging an entire soda. Now why is that?


Soda is loaded with gas bubbles — carbon dioxide (CO2), to be specific. And at standard temperature (68oF) and pressure (14.7 psi), carbon dioxide is a gas. However, if you burped in Antarctica in the wintertime, it would begin to freeze as soon as it left your lips. The freezing temperature of CO2 is -109oF, and Antarctic winters can get down to -140oF. You’ve actually seen this before, as dry ice (frozen burps!).


Carbon dioxide has no liquid state at low pressures (75 psi or lower), so it goes directly from a block of dry ice to a smoky gas (called sublimation). It’s also acidic and will turn cabbage juice indicator from blue to pink. CO2 is colorless and odorless, just like water, but it can make your mouth taste sour and cause your nose to feel as if it’s swarming with wasps if you breathe in too much of it (though we won’t get anywhere near that concentration with our experiments).


The triple point of CO2 (the point at which CO2 would be a solid, a liquid, and a gas all at the same time) is around five times the pressure of the atmosphere (75 psi) and around -70oF. (What would happen if you burped then?)


What sound does a fresh bottle of soda make when you first crack it open? PSSST! What is that sound? It’s the CO2 (carbon dioxide) bubbles escaping. What is the gas you exhale with every breath? Carbon dioxide. Hmmm … it seems as if your soda is already pre-burped. Interesting.


We’ll actually be doing a few different experiments, but they all center around producing burps (carbon dioxide gas). The first experiment is more detective work in finding out where the CO2 is hiding. With the materials we’ve listed (chalk, tile, limestone, marble, washing soda, baking soda, vinegar, lemon juice, etc. …) and a muffin tin, you can mix these together and find the bubbles that form, which are CO2. (Not all will produce a reaction.) You can also try flour, baking powder, powdered sugar, and cornstarch in place of the baking soda. Try these substitutes for the vinegar: water, lemon juice, orange juice, and oil.


Materials:


  • baking soda
  • chalk
  • distilled white vinegar
  • washing soda
  • disposable cups and popsicle sticks
Please login or register to read the rest of this content.

Phenolphthalein is a weak, colorless acid that changes color when it touches acidic (turns orange) or basic (turns pink/fuchsia) substances. People used to take it as a laxative (not recommended today, as ingesting high amounts may cause cancer). Use gloves when handling this chemical, as your skin  can absorb it on contact. I’ll show you how:


Please login or register to read the rest of this content.

You can use this as real ink by using it BEFORE you combine them together like this: dip a toothpick into the first solution (sodium ferrocyanide solution) and with the tip write onto a sheet of paper.


While the writing is drying, dip a piece of paper towel int other solution (ferric ammonium sulfate solution) and gently blot along where you wrote on the paper… and the color appears as blue ink. You can make your secret message disappear by wiping a paper towel dipped in a sodium carbonate solution.


You can also grow purple, gold, and red crystals with these chemicals… we’ll show you how!


Materials:


  • sodium ferrocyanide
  • ferric ammonium sulfate
  • 2 test tubes
  • distilled water
  • goggles and gloves
  • water
Please login or register to read the rest of this content.

Dissolving calcium chloride is highly exothermic, meaning that it gives off a lot of heat when mixed with water (the water can reach up to 140oF, so watch your hands!). The energy released comes from the bond energy of the calcium chloride atoms, and is actually electromagnetic energy.


When you combine the calcium chloride and sodium carbonate solutions, you form the new chemicals sodium chloride (table salt) and calcium carbonate. Both of these new chemicals are solids and “fall out” of the solution, or precipitate. If you find that there is still liquid in the final solution, you didn’t have quite a saturation solution of one (or both) initial solutions.


Please login or register to read the rest of this content.

I mixed up two different liquids (potassium iodide and a very strong solution of hydrogen peroxide) to get a foamy result at a live workshop I did recently. See what you think!


Note: because of the toxic nature of this experiment, it’s best to leave this one to the experts.



Nurses will put hydrogen peroxide on a cut to kill germs. It’s also used in rocket fuel as an oxidizer. The hydrogen peroxide in your grocery store is a weak 3% solution. The hydrogen peroxide used here is 10X stronger than the grocery store variety. The KI (potassium iodide) is the catalyst in the experiment which speeds up the decomposition of the hydrogen peroxide. This is an exothermic reaction (gives off heat).


What state of matter is fire? Is it a liquid? I get that question a LOT, so let me clarify. The ancient scientists (Greek, Chinese… you name it) thought fire was a fundamental element. Earth, Air Water, and Fire (sometimes Space was added, and the Chinese actually omitted Air and substituted Wood and Metal instead) were thought to be the basic building blocks of everything, and named it an element. And it’s not a bad start, especially if you don’t have a microscope or access to the internet.


Today’s definition of an element comes from peeking inside the nucleus of an atom and counting up the protons. In a flame, there are lots of different molecules from NO, NO2, NO3, CO, CO2, O2, C… to name a few. So fire can’t be an element, because it’s made up of other elements. So, what is it?


Please login or register to read the rest of this content.

h2o2This experiment below is for advanced students. If you’ve ever wondered why hydrogen peroxide comes in dark bottles, it’s because the liquid reacts with sunlight to decompose from H2O2 (hydrogen peroxide) into H2O (water) and O2 (oxygen). If you uncap the bottle and wait long enough, you’ll eventually get a container of water (although this takes a LOOONG time to get all of the H2O2 transformed.)


Here’s a way to speed up the process and decompose it right before your eyes. For younger kids, you can modify this advanced-level experiment so it doesn’t involve flames. Here’s what you do:


Please login or register to read the rest of this content.

This experiment is for advanced students.Have you ever taken a gulp of the ocean? Seawater can be extremely salty! There are large quantities of salt dissolved into the water as it rolled across the land and into the sea. Drinking ocean water will actually make you thirstier (think of eating a lot of pretzels). So what can you do if you’re deserted on an island with only your chemistry set?


Let me show you how to take the salt out of water with this easy setup.


Please login or register to read the rest of this content.

If you’ve ever owned a fish tank, you know that you need a filter with a pump. Other than cleaning out the fish poop, why else do you need a filter? (Hint: think about a glass of water next to your bed. Does it taste different the next day?)


There are tiny air bubbles trapped inside the water, and you can see this when you boil a pot of water on the stove. The experimental setup shown in the video illustrates how a completely sealed tube of water can be heated… and then bubbles come out one end BEFORE the water reaches a boiling point. The tiny bubbles smoosh together to form a larger bubble, showing you that air is dissolved in the water.


Materials:


  • test tube clamp
  • test tube
  • lighter (with adult help)
  • alcohol burner or votive candle
  • right-angle glass tube inserted into a single-hole stopper
  • regular tap water
Please login or register to read the rest of this content.

No kidding! You’ll be able to show your friends this super-cool magic show chemistry trick with very little fuss (once you get the hang of it). This experiment is for advanced students. Before we start, here are a few notes about the setup to keep you safe and your nasal passages intact:

The chemicals required for this experiment are toxic! This is not an experiment to do with little kids or pets around, and you want to do the entire experiment outside or next to an open window for good ventilation, as the fumes from the sodium hydroxide/zinc solution should not be inhaled.


This experiment is not dangerous when you follow the steps I’ve outlined carefully. I’ll take you step by step and show you how to handle the chemicals, mix them properly, and dispose of the waste when you’re done.


Goggles and gloves are a MUST for this experiment, as the sodium hydroxide (in both liquid and solid form) is caustic and corrosive and will burn your skin on contact.


Please login or register to read the rest of this content.

This experiment shows how a battery works using electrochemistry. The copper electrons are chemically reacting with the lemon juice, which is a weak acid, to form copper ions (cathode, or positive electrode) and bubbles of hydrogen.


These copper ions interact with the zinc electrode (negative electrode, or anode) to form zinc ions. The difference in electrical charge (potential) on these two plates causes a voltage.


Materials:


  • one zinc and copper strip
  • two alligator wires
  • digital multimeter
  • one fresh large lemon or other fruit
Please login or register to read the rest of this content.

Cobalt chloride (CoCl2) has a dramatic color change when combined with water, making it a great water indicator. A concentrated solution of cobalt chloride is red at room temperature, blue when heated, and pale-to-clear when frozen. The cobalt chloride we’re using is actually cobalt chloride hexahydrate, which means that each CoCl2 molecule also has six water molecules (6H2O) stuck to it.


Please login or register to read the rest of this content.

If you don’t have equipment lying around for this experiment, wait until you complete Unit 10 (Electricity) and then come back to complete this experiment. It’s definitely worth it!


Electroplating was first figured out by Michael Faraday. The copper dissolves and shoots over to the key and gets stuck as a thin layer onto the metal key. During this process, hydrogen bubbles up and is released as a gas. People use this technique to add material to undersized parts, for place a protective layer of material on objects, to add aesthetic qualities to an object.


Materials:


  • one shiny metal key
  • 2 alligator clips
  • 9V battery clip
  • copper sulfate (MSDS)
  • one copper strip or shiny copper penny
  • one empty pickle jar
  • 9V battery
Please login or register to read the rest of this content.

This is the experiment that your audience will remember from your chemistry magic show. Here’s what happens – you call up six ‘helpers’ and hand each a seemingly empty test tube. Into each test tube, pour a little of the main gold-colored solution, say a few magic words, and their test tubes turn clear, black, pink, gold, yellow, and white. With a flourish, ask them to all pour their solutions back into yours and the final solution turns from inky black to clear. Voila!


I first saw a similar experiment when I was a kid, and I remembered it all the way through college, where I asked my professor how I could duplicate the experiment on my own. I was told that the chemicals used in that particular experiment were way too dangerous, and no substitute experiment was possible, especially for the color reversal at the end. I was determined to figure out an alternative. After two weeks of nothing but chemistry and experiment testing, I finally nailed it – and the best part is, you have most of these chemicals at the grocery store. (And the best part is, I can share it with you as I’ve eliminated the nasty chemicals so you don’t have to worry about losing an eyeball or a finger.)


NOTE: This experiment requires adult help, as it uses chemicals that are toxic if randomly mixed together.  Follow the instructions carefully, and do not mix random chemicals together.


Are you ready to mix up your own rainbow?


Please login or register to read the rest of this content.

If you love the idea of mixing up chemicals and dream of having your own mad science lab one day, this one is for you. You are going to mix up each solid with each liquid in a chemical matrix.


In a university class, one of the first things you learn in chemistry is the difference between physical and chemical changes. An example of a physical change happens when you change the shape of an object, like wadding up a piece of paper. If you light the paper wad on fire, you now have a chemical change. You are rearranging the atoms that used to be the molecules that made up the paper into other molecules, such as carbon monoxide, carbon dioxide, ash, and so forth.


How can you tell if you have a chemical change? If something changes color, gives off light (such as the light sticks used around Halloween), or absorbs heat (gets cold) or produces heat (gets warm), it’s a chemical change.


What about physical changes? Some examples of physical changes include tearing cloth, rolling dough, stretching rubber bands, eating a banana, or blowing bubbles.


About this experiment: Your solutions will turn red, orange, yellow, green, blue, purple, hot, cold, bubbling, foaming, rock hard, oozy, and slimy, and they’ll crystallize and gel — depending on what you put in and how much!


This is the one set of chemicals that you can mix together without worrying about any lethal gases.  I do recommend doing this OUTSIDE, as the alcohol and peroxide vapors can irritate you. Always have goggles on and gloves on your hands, and a hose handy in case of spills. Although these chemicals are not harmful to your skin, they can cause your skin to dry out and itch. Wear gloves (latex or similar) and eye protection (safety goggles), and if you’re not sure about an experiment or chemical, just don’t do it. (Skip the peroxide and cold pack if you have small kids.)


Materials:
• sodium tetraborate (borax, a laundry whitener)
• sodium bicarbonate (baking soda)
• sodium carbonate (washing soda)
• calcium chloride (also known as “DriEz” or “Ice Melt”)
• ammonium nitrate (single-use disposable cold pack)
• isopropyl rubbing alcohol
• hydrogen peroxide
• acetic acid (distilled white vinegar)
• water
• liquid dish soap (add to water)
• muffin tin or disposable cups
• popsicle sticks for stirring and mixing
• tablecloths (one for the table, another for the floor)
• head of red cabbage (indicator)


Please login or register to read the rest of this content.

First discovered in 1886 by Hans Heinrich Landolt, the iodine clock reaction is one of the best classical chemical kinetics experiments. Here’s what to expect:  Two clear solutions are mixed. At first there is no visible reaction, but after a short time, the liquid suddenly turns dark blue.


Usually, this reaction uses a solution of hydrogen peroxide with sulfuric acid, but you can substitute a weaker (and safer) acid that works just as well:  acetic acid (distilled white vinegar). The second solution contains potassium iodide, sodium thiosulfate (crystals), and starch (we’re using a starch packing peanut, but you can also use plain old cornstarch). Combine one with the other to get the overall reaction, but note that there are actually two reactions happening simultaneously.


Please login or register to read the rest of this content.

Mars is coated with iron oxide, which not only covers the surface but is also present in the rocks made by the volcanoes on Mars.


Today you get to perform a chemistry experiment that investigates the different kinds of rust and shows that given the right conditions, anything containing iron will eventually break down and corrode. When iron rusts, it’s actually going through a chemical reaction: Steel (iron) + Water (oxygen) + Air (oxygen) = Rust
Materials


  • Four empty water bottles
  • Four balloons
  • Water
  • Steel wool
  • Vinegar
  • Water
  • Salt
Please login or register to read the rest of this content.

Mathematically speaking, this particular flying object shouldn't be able to fly.  What do you think about that?

Why can this thing fly? It doesn’t even LOOK like a plane! When I teach at the university, this is the plane that mathematically isn’t supposed to be able to fly! There are endless variations to this project—you can change the number of loops and the size of loops, you can tape two of these together, or you can make a whole pyramid of them. Just be sure to have fun!

Find the Center of Pressure (CP) by doing the opposite: Using a blow-dryer set to low-heat so you don’t scorch your airplane, blast a jet of air up toward the ceiling. Put your airplane in the air jet and, using a pencil tip on the top side of your plane, find the point at which the airplane balances while in the airstream. Label this point “CP” for Center of Pressure. (Which one is closest to the nose?)

Besides paying attention to the CG and CP points, aeronautical engineers need to figure out the static and dynamic stability of an airplane, which is a complicated way of determining whether it will fly straight or oscillate out of control during flight. Think of a real airplane and pretend you’ve got one balanced on your finger. Where does it balance? Airplanes typically balance around the wings (the CG point). Ever wonder why the engines are at the front of small airplanes? The engine is the heaviest part of the plane, and engineers use this weight for balance, because the tail (elevator) is actually an upside-down wing that pushes the tail section down during flight.

When we use math to add up the forces (the pull of gravity would be the weight, for example), it works out that there isn’t enough lift generated by thrust to overcome the weight and drag. When I say, “mathematically speaking...” I mean that the numbers don’t work out quite right. When this happens in science for real scientists, it usually means that they don’t fully understand something yet. There are a number of ‘unsolved’ mysteries still in science.. maybe you’ll be able to help us figure them out?

Please login or register to read the rest of this content.


These are a set of videos made using planetarium software to help you see how the stars and planets move over the course of months and years. See what you think and tell us what you learned by writing your comments in the box below.


What’s odd about these star trails?

You can really feel the Earth rolling around under you as you watch these crazy star trails.
Please login or register to read the rest of this content.


Ever wonder exactly how far away the planets really are?  Here’s the reason they usually don’t how the planets and their orbits to scale – they would need a sheet of paper nearly a mile long!


To really get the hang of how big and far away celestial objects really are, find a long stretch of road that you can mark off with chalk.  We’ve provided approximate (average) orbital distances and sizes for building your own scale model of the solar system.


When building this model, start by marking off the location of the sun (you can use chalk or place the objects we have suggested below as placeholders for the locations).  Are you ready to find out what’s out there?  Then let’s get started.


Materials:


  • measuring tape (the biggest one you have)
  • tape or chalk to mark off the locations
  • 2 grains of sand or white sugar
  • 12″ beach ball
  • 3 peppercorns
  • golf or ping pong ball
  • shooter-size marble
  • 2 regular-size marbles

Please login or register to read the rest of this content.

Please login or register to read the rest of this content.


After you've participated in the Planetarium Star Show (either live or by listening to the MP3 download), treat your kids to a Solar System Treasure Hunt!  You'll need some sort of treasure (I recommend astronomy books or a pair of my favorite binoculars, but you can also use 'Mars' candy bars or home made chocolate chip cookies (call them Galaxy Clusters) instead.

You can print out the clues and hide these around your house on a rainy day.  Did you know that I made these clues up myself as a refresher course after the astronomy presentation?  Enjoy!

Please login or register to read the rest of this content.


You know you're not supposed to look at the sun, so how can you study it safely?  I'm going to show you how to observe the sun safely using a very inexpensive filter.  I actually keep one of these in the glove box of my car so I can keep track of certain interesting sunspots during the week!

The visible surface of the sun is called the photosphere, and is made mostly of plasma (remember the grape experiment?) that bubbles up hot and cold regions of gas. When an area cools down, it becomes darker (called sunspots). Solar flares (massive explosions on the surface), sunspots, and loops are all related the sun’s magnetic field. While scientists are still trying to figure this stuff out, here’s the latest of what they do know...

The sun is a large ball of really hot gas - which means there are lots of naked charged particles zipping around. And the sun also rotates, but the poles and the equator move and different speeds (don’t forget – it’s not a solid ball but more like a cloud of gas). When charged particles move, they make magnetic fields (that’s one of the basic laws of physics). And the different rotation rates allow the magnetic fields to ‘wind up’ and cause massive magnetic loops to eject from the surface, growing stronger and stronger until they wind up flipping the north and south poles of the sun (called ‘solar maximum’). The poles flip every eleven years.

There have been several satellites specially created to observe the sun, including Ulysses (launched 1990, studied solar wind and magnetic fields at the poles), Yohkoh (1991-2001, studied x-rays and gamma radiation from solar flares), SOHO (launched 1995, studies interior and surface), and TRACE (launched 1998, studies the corona and magnetic field).

Ok - so back to observing the sun form your own house. Here's what you need to do:

Please login or register to read the rest of this content.


mars-retrogradeIf you watch the moon, you’d notice that it rises in the east and sets in the west. This direction is called ‘prograde motion’. The stars, sun, and moon all follow the same prograde motion, meaning that they all move across the sky in the same direction.

However, at certain times of the orbit, certain planets move in ‘retrograde motion’, the opposite way. Mars, Venus, and Mercury all have retrograde motion that have been recorded for as long as we’ve had something to write with. While most of the time, they spend their time in the ‘prograde’ direction, you’ll find that sometimes they stop, go backwards, stop, then go forward again, all over the course of several days to weeks.

Here are videos I created that show you what this would look like if you tracked their position in the sky each night for an year or two.

Please login or register to read the rest of this content.

f18Sound can change according to the speed at which it travels. Another word for sound speed is pitch. When the sound speed slows, the pitch lowers. With clarinet reeds, it’s high. Guitar strings can do both, as they are adjustable. If you look carefully, you can actually see the low pitch strings vibrate back and forth, but the high pitch strings move so quickly it’s hard to see. But you can detect the effects of both with your ears.

Please login or register to read the rest of this content.

This is one of my absolute favorites, because it’s so unexpected and unusual… the setup looks quite harmless, but it makes a sound worse than scratching your nails on a chalkboard. If you can’t find the weird ingredient, just use water and you’ll get nearly the same result (it just takes more practice to get it right). Ready?

NOTE: DO NOT place these anywhere near your ear… keep them straight out in front of you.

Please login or register to read the rest of this content.

This section is actually a collection of the experiments that build on each other.  We’ll be playing with sound waves, and the older students will continue on after this experiment to build speakers.

Please login or register to read the rest of this content.