soccerball1This experiment is one of my favorites in this acceleration series, because it clearly shows you what acceleration looks like. The materials you need is are:

  • a hard, smooth ball (a golf ball, racket ball, pool ball, soccer ball, etc.)

  • tape or chalk

  • a slightly sloping driveway (you can also use a board for a ramp that's propped up on one end)
For advanced students, you will also need: a timer or stopwatch, pencil, paper, measuring tape or yard stick, and this printout.

Grab a friend to help you out with this experiment - it's a lot easier with two people.

Are you ready to get started really discovering what acceleration is all about?

Here's what you do: Please login or register to read the rest of this content.

Please login or register to read the rest of this content.

Click here to go to next lesson on Describing Motion with Equations


This is a recording of a recent live teleclass I did with thousands of kids from all over the world. I’ve included it here so you can participate and learn, too!


We’re ready to deal with the topic you’ve all been waiting for! Join me as we find out what happens to stars that wander too close, how black holes collide, how we can detect super-massive black holes in the centers of galaxies, and wrestle with question: what’s down there, inside a black hole?


Materials:


  • marble
  • metal ball (like a ball bearing) or a magnetic marble
  • strong magnet
  • small bouncy ball
  • tennis ball and/or basketball
  • two balloons
  • bowl
  • 10 pennies
  • saran wrap (or cup open a plastic shopping bag so it lays flat)
  • aluminum foil (you’ll need to wrap inflated balloons with the foil, so make sure you have plenty of foil)
  • scissors
Please login or register to read the rest of this content.

Mechanics is the study of the motion of objects. This is a great place to start your studies in physics since it’s such a BIG idea. We’ll be learning the language, laws, concepts, and principles that explain the motion of objects. We’re going to learn about kinematics, which is the words scientists use to explain the motion of objects. By learning about scalars, vectors, speed, velocity, acceleration, distance, and more, you’ll be able to not only accurately describe the motion of objects, but be able to predict their behavior. This is very important, whether you’re planning to land a spaceship on a moon, catapult a marshmallow in your mouth from across the room, or win a round of billiards.


Please login or register to read the rest of this content.

We can describe how something moves with words, numbers, graphs, charts, or equations. To do that, we need to measure things with rulers and stopwatches. If I asked you how fast your car goes on the freeway, you could say fast or you could also say 55 mph. That 55 mph is a quantitative number that describes the motion of your car. The car travels 55 miles every hour. It’s also a scalar quantity, since you only mentioned the magnitude (how fast the car is going) and not it’s direction. A vector quantity is when you’d say 55 mph southeast. Vectors include a number and a direction. Scalars deal only with numbers.


Please login or register to read the rest of this content.

Distance and displacement sound the same, don’t they? But they’re just a little different from each other, and here’s how: distance is a scalar quantity, like 5 miles. Displacement is a vector quantity that describes how far out of place an object is, like going up and down the same flight of 8 steps. Your distance is 16 steps, but your displacement is zero, since you physically traveled 8 steps up and 8 steps down, but your total is zero since we also take into account the direction of travel, and everything cancels out.


Please login or register to read the rest of this content.

Have you noticed that scalar quantities ignore direction, and vector quantities take direction into account? Speed and velocity also sound the same, don’t they? But again, one is a vector and one is a scalar. Speed is the scalar quantity that describes how fast something is moving, like 100 mph. It’s the rate that something covers over a distance.


Rockets are fast, so they have high speeds, which means they cover large distances in a short amount of time. Compared to the speed of light, however, rockets are quite slow. (You always have to keep in mind what you are comparing to.) Velocity is a vector quantity that has a magnitude and a direction, like 100 mph north. It doesn’t matter if your speeding up or slowing down (we take that into account when we look at acceleration of an object). Velocity is the change in distance over a given time, or v = d / t. If a jet travels 600 miles in an hour, then it’s moving at 600 mph. A car going 25 miles in a half hour is moving at 50 mph. A snail crawling an inch every four minutes is moving at 0.25 inches per minute. You can mix up the units of distance and time to be whatever is most useful to you, whether it’s miles per hour, feet per minute, or meters per second. Most objects don’t just travel at one speed, however.


When you travel in a car, sometimes it’s on the freeway (65 mph), sometimes you’re at a stoplight (zero mph), sometimes you’re driving through the neighborhood (25 mph), and so forth. Your car has a lot of speed changes, so it’s useful to be able to calculate the average speed and average velocity of your car. It’s also useful to know the speed or velocity at a given instant in time, called your instantaneous speed or instantaneous velocity.


Please login or register to read the rest of this content.

Acceleration is defined as a change in velocity. In other words, it is a change in speed or a change in direction. It is how much time it takes something to go from one velocity to another. Remember that velocity is speed and direction. If you go straight ahead on your bike at a constant speed of 5 mph, you are not accelerating because neither your speed nor your direction is changing. Now, if you are stopped at a stop light and it turns green, you are accelerating as your speed increases from zero to 10 mph.


The word ‘acceleration’ is a little confusing, since sometimes people say someone is ‘accelerating’ when they really mean that they are ‘moving really fast’. Acceleration simply means changing speed or direction, not if they are going fast or not. Also, in physics we don’t use the word deceleration. We use positive and negative acceleration. So if you went from 10 mph to zero, you’d say that you have a negative acceleration, not deceleration.


Now what happens if you are in a car and it turns a corner at a constant speed of 15 mph? Is it accelerating or not? Well, the speed is not changing but its direction is, so it is indeed accelerating.Remember back when we talked about gravity? We learned that gravity accelerates things at 32 feet per second². Now this may make a little more sense. Gravity made something continue to increase in speed so that after one second of having the force of gravity pull on something, that something has reached a speed of 32 feet per second. When that thing started falling it was at 0 velocity, after a second it’s at 32 feet per second after 2 seconds it’s at 64 feet per second and so on.It’s the old formula v = gt or velocity equals the gravitational constant (32 ft/s²) times time.


Please login or register to read the rest of this content.

If you need a refresher on how to convert units, here’s a video on how to do it:
Please login or register to read the rest of this content.


If something has an acceleration of 5 ft/s² how fast will it be going after 1 second…2 second…3 seconds? After one second it will be going 5 ft/s; after two seconds 10 ft/s; and after three seconds 15 ft/s. Again, it’s just like v = gt (v is velocity, g is the gravitational constant, t is time) but put the rate of acceleration of the object in place of g to get the formula v = at or velocity equals acceleration times time.

Once in a while, an object will change its velocity by the same amount at the same rate, and when this happens, it's called constant acceleration, since the velocity is changing by the same amount each time. Note that constant acceleration is not the same as constant velocity. If an object is changing speed, no matter how consistently it does it, it's still accelerating since it doesn't have a constant velocity. Objects in free fall motion, like a sky diver, experiences constant acceleration and may also eventually reach a constant velocity, but this is a very special case (we'll talk more about that later).

Average acceleration is found by dividing the average velocity (the difference between the initial and final velocity points) by the time lapsed between the two points. Acceleration is measured in a variety of units, but the most common are "meters per second squared" (m/s2) or "feet per second squared" (ft/s2).

Please login or register to read the rest of this content.



Download Student Worksheet & Exercises

Take a look at your marks. See how they get farther and farther apart as the ball continues to accelerate? Your ball was constantly increasing speed and as such, it was constantly accelerating. By the way, would it have mattered what the mass of the ball was that you used? No. Gravity accelerates all things equally. This fact is what Galileo was proving when he did this experiment. The the weight of the ball doesn’t matter but the size of the ball might. If you used a small ball and a large ball you would probably see differences due to friction and rotational inertia. The bigger the ball, the more slowly it begins rolling. The mass of the ball, however, does not matter.

Exercises
  1. Was the line a straight line?

  2. It should be close now, and the slope represents the acceleration it experienced going down the ramp. Calculate the slope of this line.

  3. What do you think would happen if you increased the height of the ramp?

  4. Knowing what you do about gravity, what is the highest acceleration it can reach?

For Advanced Students...

Please login or register to read the rest of this content.

Is acceleration a scalar or a vector quantity? You could argue that it's both actually, but in physics it's usually a vector. This means that acceleration has a magnitude and a direction. The direction is either "+" or "-", depending on if an object is increasing or decreasing speed. Usually, objects that speed up have their acceleration vector in the same direction as the object is moving in. If it's slowing down, then the arrow flips to be in the opposite direction.

 

Click here to go to next lesson on Vector Diagrams


Chemistry is all about studying chemical reactions and the combinations of elements and molecules that combine to give new stuff.  Chemical reactions can be written down as a balanced equation that shows how much of each molecule and compound are needed for that particular reaction. Here’s how you do it:


Please login or register to read the rest of this content.

This is a recording of a recent live teleclass I did with thousands of kids from all over the world. I've included it here so you can participate and learn, too

Our solar system includes rocky terrestrial planets (Mercury, Venus, Earth, and Mars), gas giants (Jupiter and Saturn), ice giants (Uranus and Neptune), and assorted chunks of ice and dust that make up various comets and asteroids.

Did you know you can take an intergalactic star tour without leaving your seat? To get you started on your astronomy adventure, I have a front-row seat for you in a planetarium-style star show. I usually give this presentation at sunset during my live workshops, so I inserted slides along with my talk so you could see the pictures better. This video below is long, so I highly recommend doing this with friends and a big bowl of popcorn. Ready?

Please login or register to read the rest of this content.


This is a recording of a recent live teleclass I did with thousands of kids from all over the world. I’ve included it here so you can participate and learn, too!


Sound is a form of energy, and is caused by something vibrating. So what is moving to make sound energy?


Molecules. Molecules are vibrating back and forth at fairly high rates of speed, creating waves. Energy moves from place to place by waves. Sound energy moves by longitudinal waves (the waves that are like a slinky). The molecules vibrate back and forth, crashing into the molecules next to them, causing them to vibrate, and so on and so forth. All sounds come from vibrations.


Materials:


  • 1 tongue-depressor size popsicle stick
  • Three 3″ x 1/4″ rubber bands
  • 2 index cards
  • 3 feet of string (or yarn)
  • scissors
  • tape or hot glue
Please login or register to read the rest of this content.

If you’re into magic shows, this is a good one to perform for an audience, because the solution goes from purple to pink to green to blue and back again!


Le Chatelier’s principle states that when the temperature is raised, an equilibrium will shift away from the side that contains energy. When temperature is lowered, the reaction shifts toward the side that contains the energy. That’s a little hard to understand, so that’s why there’s a really cool experiment that will show you exactly what we see happening with this principle.


Remember that exothermic reactions are chemical reactions that give off energy. In this experiment, this reaction is exothermic, which is going to be an important key in predicting which way the system will balance itself as it gets subjected to temperature changes.


Please login or register to read the rest of this content.

This is a recording of a recent live teleclass I did with thousands of kids from all over the world. I’ve included it here so you can participate and learn, too!


Soar, zoom, fly, twirl, and gyrate with these amazing hands-on classes which investigate the world of flight. Students created flying contraptions from paper airplanes and hangliders to kites! Topics we will cover include: air pressure, flight dynamics, and Bernoulli’s principle.


Materials:


  • 5 sheets of 8.5×11” paper
  • 2 index cards
  • 2 straws
  • 2 small paper clips
  • Scissors, tape
  • Optional: ping pong ball and a small funnel
Please login or register to read the rest of this content.

We’re going to do an experiment where it will look like we can boil soda on command… but the truth is, it’s not really boiling in the first place! If you drink soda, save one for doing this experiment. Otherwise, get one that’s “diet” (without the sugar, it’s a lot easier to clean up).


Please login or register to read the rest of this content.

How many seconds in an hour?
How tall are you in centimeters?
How big is your house?


If it sounds confusing to convert miles to inches or years to seconds, then this video will show you how to convert them easily:
Please login or register to read the rest of this content.


Molecules are the building blocks of matter.


You’ve probably heard that before, right? But that does it mean? What does a molecule look like? How big are they?


While you technically can measure the size of a molecule, despite the fact it’s usually too small to do even with a regular microscope, what you can’t do is see an image of the molecule itself. The reason has to do with the limits of nature and wavelengths of light, not because our technology isn’t there yet, or we’re not smart enough to figure it out. Scientists have to get creative about the ways they do about measuring something that isn’t possible to see with the eyes.


Here’s a cool experiment you can do that will approximate the size of a molecule. Here’s what you need:


Please login or register to read the rest of this content.

This is a recording of a recent live teleclass I did with thousands of kids from all over the world. I've included it here so you can participate and learn, too! Blast your imagination with this super-popular class on rocketry! Kids learn about fin design, hybrid and solid-state rocketry, and how rockets make it into space without falling out of orbit. This class is taught by a real live rocket scientist (me!). We'll launch rockets during the class, too! Please login or register to read the rest of this content.


This is a recording of a recent live teleclass I did with thousands of kids from all over the world. I've included it here so you can participate and learn, too!

We're going to cover energy and motion by building roller coasters and catapults! Kids build a working catapult while they learn about the physics of projectile motion and storing elastic potential energy. Let's discover the mysterious forces at work behind the thrill ride of the world’s most monstrous roller coasters, as we twist, turn, loop and corkscrew our way through g-forces, velocity, acceleration, and believe it or not, move through orbital mechanics, like satellites. We’ll also learn how to throw objects across the room in the name of science… called projectile motion. Are you ready for a fast and furious physics class?

Please login or register to read the rest of this content.


Laser light is collimated, meaning that it travels in parallel rays. Here’s a really cool experiment that will show you the difference between a non-collimated light, like from a flashlight and collimated light from a laser.


Ordinary light from a light bulb diverges as it travels. It spreads out and covers a larger and larger area the further out you go. A laser has little to no divergence, so we way that laser light is collimated.


Please login or register to read the rest of this content.

Lasers light is different from light from a flashlight in a couple of different ways. Laser light is monochromatic, meaning that it’s only one color.


Laser light is also coherent, which means that the light is all in synch with each other, like soldiers marching in step together. Since laser light is coherent, which means that all the light waves peaks and valleys line up. The dark areas are destructive interference, where the waves cancel each other out. The areas of brightness are constructive interference, where the light adds, or amplifies together. LED light is not coherent because the light waves are not in phase.


Please login or register to read the rest of this content.

Gummy bears are a great way to bust one of the common misconceptions about light reflection. The misconception is this: most students think that color is a property of matter, for example if I place shiny red apple of a sheet of paper in the sun, you’ll see a red glow on the paper around the apple.


Where did the red light come from? Did the apple add color to the otherwise clear sunlight? No. That’s the problem. Well, actually that’s the idea that leads to big problems later on down the road. So let’s get this idea straightened out.


Please login or register to read the rest of this content.

The angle that the reflected light makes with a line perpendicular to to the mirror is always equal to the angle of the incident ray for a plane (2-dimensional) surface.


We’re going to play with how light reflects off surfaces. At what angle does the light get reflected? This experiment will show you how to measure it.


Please login or register to read the rest of this content.

This simple activity has surprising results! We’re going to bend light using plain water. Light bends when it travels from one medium to another, like going from air to a window, or from a window to water. Each time it travels to a new medium, it bends, or refracts. When light refracts, it changes speed and wavelength, which means it also changes direction.


Please login or register to read the rest of this content.

You will be able to identify minerals by their colors and streaks, and be able to tell a sample of real gold from the fake look-alike called pyrite.


Please login or register to read the rest of this content.

By the end of this lab, you will be able to line up rocks according to how hard they are by using a specific scale. The scale goes from 1 to 10, with 10 being the hardest minerals.
Please login or register to read the rest of this content.


Tenacity is a measure of how resistive a mineral is to breaking, bending, or being crushed. When you exceed that limit, fracture is how the mineral breaks once the tenacity (or tenacious) limit has been exceeded.


Please login or register to read the rest of this content.

Luster is the way a mineral reflects light, and it depends on the surface reflectivity.


Please login or register to read the rest of this content.

Popcorn rocks are different than regular dolomite samples because they have a lot more magnesium inside. This was first discovered by a geology professor in the 1980s who was dissolving the limestone around fossils he was studying in his rock samples. When he placed samples of this type in the acid to dissolve, it didn’t dissolve but instead grew new crystals!


Please login or register to read the rest of this content.

This lab is a physical model of what happens on Mercury when two magnetic fields collide and form magnetic tornadoes.

You’ll get to investigate what an invisible magnetic tornado looks like when it sweeps across Mercury.

Materials

  • Two clear plastic bottles (2 liter soda bottles work well)
  • Steel washer with a 3/8 inch hole
  • Ruler and stopwatch
  • Glitter or confetti (optional)
  • Duct tape (optional)

Please login or register to read the rest of this content.


Using the position of the Sun, you can tell what time it us by making one of these sundials. The Sun will cast a shadow onto a surface marked with the hours, and the time-telling gnomon edge will align with the proper time.


In general, sundials are susceptible to different kinds of errors. If the sundial isn’t pointed north, it’s not going to work. If the sundial’s gnomon isn’t perpendicular, it’s going to give errors when you read the time. Latitude and longitude corrections may also need to be made. Some designs need to be aligned with the latitude they reside at (in effect, they need to be tipped toward the Sun at an angle). To correct for longitude, simply shift the sundial to read exactly noon when indicated on your clock. This is especially important for sundials that lie between longitudinal standardized time zones. If daylight savings time is in effect, then the sundial timeline must be shifted to accommodate for this. Most shifts are one hour.


Please login or register to read the rest of this content.

Today you get to concentrate light, specifically the heat, from the Sun into a very small area. Normally, the sunlight would have filled up the entire area of the lens, but you’re shrinking this down to the size of the dot.


Magnifying lenses, telescopes, and microscopes use this idea to make objects appear different sizes by bending the light. When light passes through a different medium (from air to glass, water, a lens…) it changes speed and usually the angle at which it’s traveling. A prism splits incoming light into a rainbow because the light bends as it moves through the prism. A pair of eyeglasses will bend the light to magnify the image.


Materials


  • Sunlight
  •  Glass jar
  • Nail that fits in the jar
  •   12” thread
  •   Hair from your head
  • 12” string
  • 12” fishing line
  • 12” yarn
  •  Paperclip
  • Magnifying glass
  •  Fire extinguisher
  •  Adult help
Please login or register to read the rest of this content.

Scientists do experiments here on Earth to better understand the physics of distant worlds. We’re going
to simulate the different atmospheres and take data based on the model we use.


Each planet has its own unique atmospheric conditions. Mars and Mercury have very thin atmospheres, while Earth has a decent atmosphere (as least, we like to think so). Venus’s atmosphere is so thick and dense (92 times that of the Earth’s) that it heats up the planet so it’s the hottest rock around. Jupiter and Saturn are so gaseous that it’s hard to tell where the atmosphere ends and the planet starts, so scientists define the layers based on the density and temperature changes of the gases. Uranus and Neptune are called ice giants because of the amounts of ice in their atmospheres.


Materials


  • 4 thermometers
  • 3 jars or water bottles
  • Plastic wrap or clear plastic baggie
  • Wax paper
  • Stopwatch
Please login or register to read the rest of this content.

Today you get to learn how to read an astronomical chart to find out when the Sun sets, when twilight ends, which planets are visible, when the next full moon occurs, and much more. This is an excellent way to impress your friends.


The patterns of stars and planets stay the same, although they appear to move across the sky nightly, and different stars and planets can be seen in different seasons.


Materials:


Please login or register to read the rest of this content.

Johannes Kepler, a German astronomer famous for his laws of planetary motion. Check out our Johannes Kepler facts page for more information.
Johannes Kepler, a German astronomer famous for his laws of planetary motion. Check out our Johannes Kepler facts page for more information.

Kepler’s Laws of planetary orbits explain why the planets move at the speeds they do. You’ll be making a scale model of the solar system and tracking orbital speeds.


Kepler’s 1st Law states that planetary orbits about the Sun are not circles, but rather ellipses. The Sun lies at one of the foci of the ellipse. Kepler’s 2nd Law states that a line connecting the Sun and an orbiting planet will sweep out equal areas in for a given amount of time. Translation: the further away a planet is from the Sun, the slower it goes.
Please login or register to read the rest of this content.


How do astronomers find planets around distant stars? If you look at a star through binoculars or a telescope, you’ll quickly notice how bright the star is, and how difficult it is to see anything other than the star, especially a small planet that doesn’t generate any light of its own! Astronomers look for a shift, or wobble, of the star as it gets gravitationally “yanked” around by the orbiting planets. By measuring this wobble, astronomers can estimate the size and distance of larger orbiting objects.


Doppler spectroscopy is one way astronomers find planets around distant stars. If you recall the lesson where we created our own solar system in a computer simulation, you remember how the star could be influenced by a smaller planet enough to have a tiny orbit of its own. This tiny orbit is what astronomers are trying to detect with this method.


Materials


  • Several bouncy balls of different sizes and weights, soft enough to stab with a toothpick
  • Toothpicks
Please login or register to read the rest of this content.

It just so happens that the Sun’s diameter is about 400 times larger than the Moon, but the Moon is 400 times closer than the Sun. This makes the Sun and Moon appear to be about the same size in the sky as viewed from Earth. This is also why the eclipse thing is such a big deal for our planet.


You’re about to make your own eclipses as you learn about syzygy. A total eclipse happens about once every year when the Moon blocks the Sun’s light. Lunar eclipses occur when the Sun, Moon, and Earth are lined up in a straight line with the Earth in the. Lunar eclipses last hours, whereas solar eclipses last only minutes.


Materials


  • 2 index cards
  • Flashlight or Sunlight
  • Tack or needle
  • Black paper
  • Scissors
Please login or register to read the rest of this content.


A meteoroid is a small rock that zooms around outer space. When the meteoroid zips into the Earth’s atmosphere, it’s now called a meteor or “shooting star”. If the rock doesn’t vaporize en route, it’s called a meteorite as soon as it whacks into the ground. The word meteor comes from the Greek word for “high in the air.”


Meteorites are black, heavy (almost twice the normal rock density), and magnetic. However, there is an Earth-made rock that is also black, heavy, and magnetic (magnetite) that is not a meteorite. To tell the difference, scratch a line from both rocks onto an unglazed tile. Magnetite will leave a mark whereas the real meteorite will not.


Materials


  • White paper
  • Strong magnet
  • Handheld magnifying glass (optional)
Please login or register to read the rest of this content.

You are going to start observing the Sun and tracking sunspots across the Sun using one of two different kinds of viewers so you can figure out how fast the Sun rotates. Sunspots are dark, cool areas with highly active magnetic fields on the Sun’s surface that last from hours to months. They are dark because they aren’t as bright as the areas around them, and they extend down into the Sun as well as up into the magnetic loops.


Materials


  • Tack and 2 index cards  OR a Baader film  (this works better than the tacks and card)
Please login or register to read the rest of this content.

What comes to mind when you think about empty space? (You should be thinking: “Nothing!”) One of Einstein’s greatest ideas was that empty space is not actually nothing – it has energy and can be influenced by objects in it. It’s like the T-shirt you’re wearing. You can stretch and twist the fabric around, just like black holes do in space.


Today, you will get introduced to the idea that gravity is the structure of spacetime itself. Massive objects curve space. How much space curves depends on how massive the object is, and how far you are from the massive object.


Materials


  • Two buckets with holes in the bottom
  • 2 bungee cords
  • 3 different sizes of marbles
  • 2.5 lb weight
  • 0.5 lb weight
  • 3 squares of stretchy fabric
  • Rubber band
  • 4 feet of string
  • Fishing bobber
  • Drinking straws
  • Softball
  • Playdough (optional)
Please login or register to read the rest of this content.

Have you ever wondered why the sky is blue? Or why the sunset is red? Or what color our sunset would be if we had a blue giant instead of a white star? This lab will answer those questions by showing how light is scattered by the atmosphere.


Particles in the atmosphere determine the color of the planet and the colors we see on its surface. The color of the star also affects the color of the sunset and of the planet.


Materials


  • Glass jar
  • Flashlight
  • Fingernail polish (red, yellow, green, blue)
  • Clear tape
  • Water
  • Dark room
  • Few drops of milk
Please login or register to read the rest of this content.

A binary system exists when objects approach each other in size (and gravitational fields), the common point they rotate around (called the center of mass) lies outside both objects and they orbit around each other. Astronomers have found binary planets, binary stars, and even binary black holes.


The path of a planet around the Sun is due to the gravitational attraction between the Sun and the planet. This is true for the path of the Moon around the Earth, and Titan around Saturn, and the rest of the planets that have an orbiting moon.


Materials


  • Soup cans or plastic containers with holes punched (like plastic yogurt containers, butter tubs, etc.)
  • String
  • Water
  • Sand
  • Rocks
  • Pebbles
  • Baking soda
  • Vinegar
Please login or register to read the rest of this content.

You’re going to use a compass to figure out the magnetic lines of force from a magnet by mapping the two different poles and how the lines of force connect the two. A magnetic field must come from a north pole of a magnet and go to a south pole of a magnet (or atoms that have turned to the magnetic field.)


Compasses are influenced by magnetic lines of force. These lines are not necessarily straight. When they bend, the compass needle moves. The Earth has a huge magnetic field. The Earth has a weak magnetic force. The magnetic field comes from the moving electrons in the currents of the Earth’s molten core. The Earth has a north and a south magnetic pole which is different from the geographic North and South Pole.


Materials


  • Bar magnet
  • Horseshoe magnet
  • Circular (disk) magnet
  • Compass
  • String
  • Ruler
Please login or register to read the rest of this content.

One common misconception is that the seasons are caused by how close the Earth is to the Sun. Today you get to do an experiment that shows how seasons are affected by axis tilt, not by distance from the Sun. And you also find out which planet doesn’t have sunlight for 42 years.


The seasons are caused by the Earth’s axis tilt of 23.4o from the ecliptic plane.


Materials


  • Bright light source (not fluorescent)
  • Balloon
  • Protractor
  • Masking tape
  • 2 liquid crystal thermometers (optional)
  • Ruler, yardstick or meter stick
  • Marker
Please login or register to read the rest of this content.

If you could stand on the Sun without being roasted, how much would you weigh? The gravitational pull is different for different objects. Let’s find out which celestial object you’d crack the pavement on, and which your lightweight toes would have to be careful about jumping on in case you leapt off the planet.


Weight is nothing more than a measure of how much gravity is pulling on you. Mass is a measure of how much stuff you’re made out of. Weight can change depending on the gravitational field you are standing in. Mass can only change if you lose an arm.


Materials


  • Scale to weigh yourself
  • Calculator
  • Pencil
Please login or register to read the rest of this content.

We’re going to do a chemistry experiment to simulate the heat generated by the internal core of Neptune by using a substance used for melting snow mixed with baking soda.


Calcium chloride splits into calcium ions and chloride ions when it is mixed with water, and energy is released in the form of heat. The energy released comes from the bond energy of the calcium chloride atoms, and is actually electromagnetic energy. When the calcium ions and chloride ions are floating around in the warm solution, they are free to interact with the rest of the ingredients added, like the sodium bicarbonate, to form carbon dioxide gas and sodium chloride (table salt).


Materials


  • Calcium chloride
  • Sodium bicarbonate (baking soda)
  • Phenol red or red food dye
  • Re-sealable plastic baggie
  • Gallon milk jug container
  • Straight pin
  • Warm water
  • Cold water
Please login or register to read the rest of this content.

Greetings and welcome to the study of astronomy! This first lesson is simply to get you excited and interested in astronomy so you can decide what it is that you want to learn about astronomy later on.


We’re going to cover a lot in this presentation, including: the Sun, an average star, is the central and largest body in the solar system and is composed primarily of hydrogen and helium.


The solar system includes the Earth, Moon, Sun, seven other planets and their satellites (moons) and smaller objects such as asteroids and comets. The structure and composition of the universe can be learned from the study of stars and galaxies. Galaxies are clusters of billions of stars, and may have different shapes. The Sun is one of many stars in our own Milky Way galaxy. Stars may differ in size, temperature, and color.


Materials


  • Popcorn
  • Pencil
Please login or register to read the rest of this content.

Helioseismology is the study of wave oscillations in the Sun. By studying the waves, scientists can tell what’s going on inside the Sun. It’s like studying earthquakes to learn what’s going on inside the earth. The Sun is filled with sound, and studying these sound waves is currently the only way scientists can tell what’s going on inside, since the light we see from the Sun is just from the upper surface.


Molecules are vibrating back and forth at fairly high rates of speed, creating waves. Energy moves from place to place by waves. Sound energy moves by longitudinal waves (the waves that are like a slinky). The molecules vibrate back and forth, crashing into the molecules next to them, causing them to vibrate, and so on and so forth. All sounds come from vibrations.


Materials


  • Musical instruments: triangles, glass bottles that can be blown across, metal forks, tuning forks, recorders, jaw harps, harmonicas, etc. Whatever you have will work fine.
Please login or register to read the rest of this content.

Jupiter not only has the biggest lightning bolts we’ve ever detected, it also shocks its moons with a charge of 3 million amps every time they pass through certain hotspots. Some of these bolts are cause by the friction of fast-moving clouds. Today you get to make your own sparks and simulate Jupiter’s turbulent storms.


Electrons are too small for us to see with our eyes, but there are other ways to detect something’s going on. The proton has a positive charge, and the electron has a negative charge. Like charges repel and opposite charges attract.


Materials


  • Foam plate
  • Foam cup
  • Wool cloth or sweater
  • Plastic baggie
  • Aluminum pie pan
  • Aluminum foil
  • Film canister or M&M container
  • Nail (needs to be a little longer than the film canister)
  • Hot glue gun or tape
  • Water
Please login or register to read the rest of this content.

On a clear night when Jupiter is up, you’ll be able to view the four moons of Jupiter (Europa, Ganymede, Io, and Callisto) and the largest moon of Saturn (Titan) with only a pair of binoculars. The question is: Which moon is which? This lab will let you in on the secret to figuring it out.


You get to learn how to locate a planet in the sky with a pair of binoculars, and also be able to tell which moon is which in the view.


Materials


  • Printout of corkscrew graph
  • Pencil
  • Binoculars (optional)
Please login or register to read the rest of this content.

If you want to get from New York to Los Angeles by car, you’d pull out a map. If you want to find the nearest gas station, you’d pull out a smaller map. What if you wanted to find our nearest neighbor outside our solar system? A star chart is a map of the night sky, divided into smaller parts (grids) so you don’t get too overwhelmed. Astronomers use these star charts to locate stars, planets, moons, comets, asteroids, clusters, groups, binary stars, black holes, pulsars, galaxies, planetary nebulae, supernovae, quasars, and more wild things in the intergalactic zoo.


How to find two constellations in the sky tonight, and how to get those constellations down on paper with some degree of accuracy.


Materials


  • Dark, cloud-free night
  • Two friends
  • String
  • Rocks
  • Pencil
Please login or register to read the rest of this content.

Although urine is sterile, it has hundreds of different kinds of wastes from the body. All sorts of things affect what is in your urine, including last night’s dinner, how much water you drink, what you do for exercise, and how well your kidneys work in the first place. This experiment will show you how the kidneys work to keep your body in top shape.


Please login or register to read the rest of this content.

When high energy radiation strikes the Earth from space, it’s called cosmic rays. To be accurate, a cosmic ray is not like a ray of sunshine, but rather is a super-fast particle slinging through space. Think of throwing a grain of sand at a 100 mph… and that’s what we call a ‘cosmic ray’. Build your own electroscope with this video!


Please login or register to read the rest of this content.

The Moon appears to change in the sky. One moment it’s a big white circle, and next week it’s shaped like a sideways bike helmet. There’s even a day where it disappears altogether. So what gives?


The Sun illuminates half of the Moon all the time. Imagine shining a flashlight on a beach ball. The half that faces the light is lit up. There’s no light on the far side, right? For the Moon, which half is lit up depends on the rotation of the Moon. And which part of the illuminated side we can see depends on where we are when looking at the Moon. Sound complicated? This lab will straighten everything out so it makes sense.


Materials


  • ball
  • flashlight
Please login or register to read the rest of this content.

Do you have thick or thin hair? Let’s find out using a laser to measure the width of your hair and a little knowledge about diffraction properties of light. (Since were using lasers, make sure you’re not pointing a laser at anyone, any animal, or at a reflective surface.)


Please login or register to read the rest of this content.

Many wonders are visible when flying over the Earth at night, especially if you are an astronaut on the International Space Station (ISS)! Passing below are white clouds, orange city lights, lightning flashes in thunderstorms, and dark blue seas. On the horizon is the golden haze of Earth’s thin atmosphere, frequently decorated by dancing auroras as the video progresses. The green parts of auroras typically remain below the space station, but the station flies right through the red and purple auroral peaks. You’ll also see solar panels of the ISS around the frame edges. The wave of approaching brightness at the end of each sequence is just the dawn of the sunlit half of Earth, a dawn that occurs every 90 minutes, as the ISS travels at 5 miles per second to keep from crashing into the earth.




Video Credit: Gateway to Astronaut Photography, NASA


When two blocks of the Earth slip past each other suddenly, that’s what we call an earthquake! From a physics point of view, earthquakes are a release of the elastic potential energy that builds up. Most energy is released as heat, not as shaking, during an earthquake. 90% of all earthquakes happen along the Ring of Fire, which is the active zone that surrounds the Pacific Ocean.


Please login or register to read the rest of this content.

We have done some extensive experiments on taste buds: how they are categorized, what tastes they recognize, and we have even mapped their location on your tongue. But we haven’t yet mentioned this fact: not all people can taste the same flavors!


So today we will check to see if you have a dominant or recessive gene for a distinct genetic characteristic. We’ll do this by testing your reaction to the taste of a chemical called phenylthiocarbamide (or PTC, for short). The interesting thing about PTC is that some people can taste it – and generally have a very adverse reaction. However, some people can’t taste it at all.


Please login or register to read the rest of this content.

Stethoscopes are instruments used to amplify sounds like your heartbeat. Your doctor is trained to use a stethoscope not only to count the beats, but he or she can also hear things like your blood entering and exiting the heart
and its valves opening and closing. Pretty cool!


Today you will make and test a homemade stethoscope. Even though it will be pretty simple, you should still be able to hear your heart beating and your heart pumping. You can also use it to listen to your lungs, just like your doctor does.


Please login or register to read the rest of this content.

Today you will make a calibrated, or marked, container that you will use to measure your lung capacity. You will fill the calibrated container with water, slide a hose into it, take a really deep breath, and blow in the hose. As the air in your lungs enters the container, it will push out the water inside. Just blow as long and as much as you can, then when you flip the bottle over you will be able to read the amount of water you have displaced. If you will subtract the water displaced from the total amount of water in the bottle, the result is your lung capacity.


Please login or register to read the rest of this content.

In this lab, we’re going to investigate the wonders of electrochemistry. Electrochemistry became a new branch of chemistry in 1832, founded by Michael Faraday. Michael Faraday is considered the “father of electrochemistry”. The knowledge gained from his work has filtered down to this lab. YOU will be like Michael Faraday. I imagined he would have been overjoyed to do this lab and see the results. You are soooo lucky to be able to take an active part in this experiment. Here’s what you’re going to do…


You will be “creating” metallic copper from a solution of copper sulfate and water, and depositing it on a negative electrode. Copper is one of our more interesting elements. Copper is a metal, and element 29 on your periodic table. It conducts heat and electricity very well.


Many things around you are made of copper. Copper wire is used in electrical wiring. It has been used for centuries in the form of pipes to distribute water and other fluids in homes and in industry. The Statue of Liberty is a wonderful example of how beautiful 180,000 pounds of copper can be. Yes, it is made of copper, and no, it doesn’t look like a penny…..on the surface. The green color is copper oxide, which forms on the surface of copper exposed to air and water. The oxide is formed on the surface and does not attack the bulk of the copper. You could say that copper oxide protects the copper.


Please login or register to read the rest of this content.

Food and air both enter your body through your mouth, diverging when they reach the esophagus and trachea. Food goes to the gastrointestinal tract through your esophagus and air travels to your lungs via the trachea, or windpipe.


You will be making a model of how your lungs work in this lab. It will include the trachea, lungs, and the diaphragm, which expands and contracts as it fills and empties your lungs.


Please login or register to read the rest of this content.

Ammonia has been used by doctors, farmers, chemists, alchemists, weightlifters, and our families since Roman times. Doctors revive unconscious patients, farmers use it in fertilizer, alchemists tried to use it to make gold, weightlifters sniff it into their lungs to invigorate their respiratory system and clear their heads prior to lifting tremendous loads. At home, ammonia is used to clean up the ketchup you spilled on the floor and never cleaned up.


The ammonia molecule (NH3) is a colorless gas with a strong odor – it’s the smell of freshly cleaned floors and windows. Mom is not cleaning with straight ammonia (it’s gas at room temperature because it boils at -28oF, so the stuff she cleans with is actually ammonium hydroxide, a solution of ammonia and water). Ammonia is found when plants and animals decompose, and it’s also in rainwater, volcanoes, your kidneys (to neutralize excess acid), in the ocean, some fertilizers, in Jupiter’s lower cloud decks, and trace amounts are found in our own atmosphere (it’s lighter than air).


Please login or register to read the rest of this content.

Digestion starts in your mouth as soon as you start to chew. Your saliva is full of enzymes. They are a kind of chemical key that unlock chains of protein, fat, and starch molecules. Enzymes break these chains down into smaller molecules like sugars and amino acids.


In this experiment, we will examine how the enzymes in your mouth help to break down the starch in a cracker. You will test the cracker to confirm starch content, then put it in your mouth and chew it for a long time in order to really let the enzymes do their job. Finally you will test the cracker for starch content and see what has happened as a result of your chewing.


Please login or register to read the rest of this content.

This experiment is for advanced students.


Purple and white colors, making the whitewash that Tom Sawyer used, and produce an exothermic chemical reaction…..does it get any better?


Limewater is one of the compounds we work with in this experiment. Limewater was used in the old days of America. We’re talking about the 80’s…..the 1880’s.


Traveling medicine shows sold what was called “patent medicines”. These usually had no medicinal properties at all. The man in charge, the salesman of the operation, was called a “huckster”. He would have the one of the people gathered around to listen to him blow into limewater. Their exhaled breath contains carbon dioxide, and the lime water turned cloudy, just like in our experiment.


The man would hold up the glass with the cloudy limewater in it and pour in some of his fantastic remedy. As long as the “medicine” was acidic, it would turn the cloudy limewater clear. This was proof that the remedy would cure whatever ailed the person.


Please login or register to read the rest of this content.

This experiment is for advanced students. This is a repeat of the experiment: Can Fish Drown? but now we’re going to do this experiment again with your new chemistry glassware.


The aquarium looked normal in every way, except for the fish. They were breathing very fast and sinking head first to the bottom of the tank. They would sink a few inches, then jerk into proper movement again.


The student had to figure out what was wrong. He had set up the aquarium as an ongoing science project, and it was his responsibility to maintain the fish tank. His grade depended on it.


He went to his mom for help. She looked over the setup. “Have you tested the water?”


A quizzical look on his face, the boy said, “Everything is normal nitrates, nitrites, hardness, alkalinity, and pH. The pH was a little acidic, but not outside the proper range.”


Please login or register to read the rest of this content.

This experiment is for advanced students.


Don’t put this in your car….yet. Hydrogen generation, capture, and combustion are big deals right now. The next phase of transportation, and a move away from fossil fuels in not found in electric cars. Electric cars are waiting until hydrogen fuel cell vehicles become practical. It can be done and is being done.


Cars being powered by hydrogen are here, but not on the market yet. Engineers and chemists are always finding new ways to improve the chemical reaction that produces hydrogen and making the vehicles more efficiently use the fuel. Hydrogen fuel is not just easy to make, it is inexpensive, and the “exhaust” is water.


We will generate hydrogen in this lab. We will also see how combustible it is. Just let your imagination wander….just a bit and you will see noiseless cars and trucks zipping along the streets and interstates, carrying people and cargo. The Indianapolis 500 wouldn’t be quite the same, though. “And there they go, roaring, I mean quietly entering turn two…”


Please login or register to read the rest of this content.

This experiment is for advanced students.


In industry, hydrogen peroxide is used in paper making to bleach the pulp before they form it into paper. Biologists, when preparing bones for display, use peroxide to whiten the bones.


At home, 3% peroxide combined with ammonium hydroxide is used to give dark-haired people their desired blonde moment. Peroxide is also used on wounds to clean them and remove dead tissue. Peroxide slows the flow from small blood vessels and oozing in wounds as well.


Please login or register to read the rest of this content.

This experiment is for advanced students.


This time we’re going to use a lot of equipment… really break out all the chemistry stuff. We’ll need all this stuff to generate oxygen with potassium permanganate (KMNO4). We will work with this toxic chemical and we will be careful…won’t we?


Please login or register to read the rest of this content.

When you exercise your body requires more oxygen in order to burn the fuel that has been stored in your muscles.  Since oxygen is moved through your body by red blood cells, exercise increases your heart rate so that the blood can be pumped through your body faster. This delivers the needed oxygen to your muscles faster. The harder you exercise, the more oxygen is needed, so your heart and blood pump even faster still.


Please login or register to read the rest of this content.

An oxygen and carbon dioxide exchange takes place in your bloodstream. When you breathe air into your lungs it brings in oxygen, which is carried from your lungs by red blood cells in your bloodstream. Cells of your body use the oxygen and carbon dioxide is produced as waste, which is carried by your blood back to your lungs. You exhale and release the C02. You will study this exchange in today’s lab.


You will be using a pH indicator known as bromothymol blue. When you exhale into a baggie, the carbon dioxide will react with water in the bag. This reaction produces carbonic acid, which starts to acidify the water. More breathes in the bag equal more carbon dioxide, which equal a lower (more acidic) pH. You will notice the bromothymol will turn green when the pH of the water is right about 6.8 and it will turn yellow when the pH drops further to 6.0 and lower.


Please login or register to read the rest of this content.

This experiment is for advanced students.


Ever use soap? Sodium hydroxide (NaOH) is the main component in lye soap. NaOH is mixed with some type of fat (vegetable, pig, cow, etc). Scent can be added for the ‘pretty’ factor and pumice or sand can be added for the manly “You’re coming off my hands and I’ll take no guff” factor. Lots of people still make their own soap and they enjoy doing it.


Please login or register to read the rest of this content.

This experiment is for advanced students.

Potassium permanganate (KMnO4) in water turns an intense, deep, purple. It is important in the film industry for aging props and clothing to make them look much older than they are.

Also, artists use it in bone carving. People who carve antlers and bone use KMnO4 to darken the surface of the bone to make it look aged. They make the carving, soak it in potassium permanganate, then carve more, and repeat. The end result is a carving that has a light golden brown color. More dipping will darken the carving even more.

Potassium permanganate is going to undergo a chemical change with this activity. In this experiment, we will be able to witness several indicators of chemical change. Color changes, bubbles from gas generation, temperature change, and color disappearance are all indicators of chemical changes.

Please login or register to read the rest of this content.


This experiment is for advanced students.

How do you know if your brother is stealing your candy? Unwrap a wrapped hard candy that he likes a lot. Roll the candy around in the powdered food dye that matches the candy. (Push the powder into the candy so it “disappears”.) Re-wrap the candy. Set the candy in the place where it usually disappears from. Wait ten minutes after the candy disappears. Find your brother. He will be sporting a new color on his hands and mouth. Dye is hard to remove. It will have to be worn every day at school until it fades away as the skin cells slough off. The dye he now wears is in indicator that he has been taking your candy.

Please login or register to read the rest of this content.


This experiment is for advanced students.

In gas form, element #59 is deadly. However, when iodine is in liquid form, it helps heal cuts and scrapes. The iodine molecule occurs in pairs, not as a single atom (many halogens do this, and it's called a diatomic molecule). It's hard to find iodine in nature, though it's essential for staying healthy... too little iodine in the body takes a heavy toll on how well the brain operates.

A chunk of iodine is blackish-blue, and will sublimate (go from a solid straight to a gas). Iodine is the heaviest element needed by living things. Iodized salt is sodium chloride fortified with iodine to prevent people from not getting enough iodine in their daily diets.

Iodine is found in seaweed (kelp) and seafood as well as vegetables that are grown in dirt that has high iodine levels. People that live inland and do not eat fish often have lower iodine levels than their coastal, fish-eating neighbors. The trick is not to get too much or too little iodine in your diet, because the symptoms of deficiency and excess levels are quite similar.

Starch (like cornstarch) are used as an indicator for detecting iodine in chemistry experiments. When combined with iodine, starch forms a blue-black color in the solution. We're going to do this and many other activities in this lab, because this experiment is actually several labs rolled into one. First, we have to make iodine, store it, and then we get to use it in several experiments. Are you ready?

Please login or register to read the rest of this content.


WARNING!! THIS EXPERIMENT IS PARTICULARLY DANGEROUS!! (No kidding.) This experiment is for advanced students.

We've created a video that shows you how to safely do this experiment, although if you're nervous about doing this one, just watch the video and skip the actual experiment.

Bromine is a particularly nasty chemical, so be sure to very carefully follow the steps we've outlined in the video. You MUST do this experiment outdoors. We'll be making a tiny amount to show how the chemical reactions involving bromine work.

Please login or register to read the rest of this content.


WARNING!! THIS EXPERIMENT IS PARTICULARLY DANGEROUS!! (No kidding.) This experiment is for advanced students.


We’ve created a video that shows you how to safely do this experiment, although if you’re nervous about doing this one, just watch the video and skip the actual experiment.


The gas you generate with this experiment is lethal in large doses, so you MUST do this experiment outdoors. We’ll be making a tiny amount to show how the chemical reactions of chlorine and hydrogen work.


Please login or register to read the rest of this content.

Your body moves when muscles pull on the bones through ligaments and tendons. Ligaments attach the bones to other bones, and the tendons attach the bones to the muscles.


If you place your relaxed arm on a table, palm-side up, you can get the fingers to move by pushing on the tendons below your wrist. We’re going to make a real working model of your hand, complete with the tendons that move the fingers! Are you ready?


Please login or register to read the rest of this content.

Did you know that the patterns on the tips of your fingers are unique? It’s true! Just like no two snowflakes are alike, no two people have the same set of fingerprints. In this experiment, you will be using a chemical reaction to generate your own set of blood-red prints.


Please login or register to read the rest of this content.

In this lab, we are going to make an eyeball model using a balloon. This experiment should give you a better idea of how your eyes work. The way your brain actually sees things is still a mystery, but using the balloon we can get a good working model of how light gets to your brain.


Please login or register to read the rest of this content.

The tongue has an ingenious design. Receptors responsible for getting information are separate and compartmentalized. So, different areas on the tongue actually have receptors for different types of tastes. This helps us to separate and enjoy the distinct flavors. In this experiment, you will be locating the receptors for sweet, sour, salty, and bitter on the tongue’s surface.


Please login or register to read the rest of this content.

We now know that odor molecules are diffused throughout a room by the motion of air molecules, which are constantly moving and bumping into them.  We also know that warm air moves faster than cold air, and that increasing the movement of the air (like with a fan) will increase the diffusion process.


In this experiment, we look at what happens when the odor molecules find their way into your nose. Your nose has smell cells located in a small area called the olfactory epithelium. We will use them here to match smells with other smells.


Please login or register to read the rest of this content.

In addition to looking pretty neat with all those loops and whirls, your fingertips are great at multitasking. The skin on them has a ton of receptors that help us to gather a lot of information about our environment such as texture, movement, pressure, and temperature.


This experiment will test your ability to determine textures by using touch receptors. You will use shoeboxes with holes cut into them to make texture boxes. Each box will have a textured surface that you can feel, but not see. Through the receptors in your fingers, you will determine whether the surface is rough, waxy, soft, or smooth.


Please login or register to read the rest of this content.

Did you know that your tongue can taste about 10,000 unique flavors? Our tongues take an organized approach to flavor classification by dividing tastes into the four basic categories of sweet, sour, salty, and bitter.


For this experiment, you will need a brave partner! They will be blindfolded and will be attempting to guess foods. Relying only on their sense of taste, they will try to determine what kind of foods you are giving them.


Please login or register to read the rest of this content.

This experiment has two parts. For the first half, you will mix two chemicals that will produce heat and gas. The temperature receptors in your skin will be able to detect the heat. Your ears will detect the gas at it vibrates and escapes its container.


In the second portion you will demonstrate a characteristic in a chemical reaction. For this experiment, it will be an endothermic reaction, which is the absorption of heat energy. This type of reaction is easy to notice because it makes things cold to touch.  The chemical you will be using, ammonium nitrate, is actually used in emergency cold packs.


Please login or register to read the rest of this content.

This lab has two parts. First, you will learn a bit about how specific chemicals react in a specific manner. And next, you will learn a bit of biology: the structure of bird bones and the minerals that compose them.


Please login or register to read the rest of this content.

Like sound, light travels in waves. These waves of light enter your eyes through the pupil, which is the small black dot right in the center of your colored iris. Your lens bends and focuses the light that enters your eye. In this experiment, we will study this process of bending light and we will look at the difference between concave and convex lenses.


Please login or register to read the rest of this content.

Skin has another function that it vital to your survival: temperature regulation. Being exposed to high temperatures causes your skin’s pores to open up and release sweat onto your body. This helps cool us off by the resulting process of evaporation.


Your pores will close in extremely cold temperatures. Also, the body stops blood flowing to the skin in order to conserve heat for the important vital organs and their processes.


In this lab, we study the moisture that your skin produces – even when you are not aware of it!


Please login or register to read the rest of this content.

Your fingers have receptors which perform various jobs. In addition to touch, they can detect pressure, texture, and other physical stimuli.  One specialized type of receptors is called Ruffini’s receptors. They are good at identifying changes in pressure and temperature. In this experiment, we will test their ability to distinguish between hot and cold temperatures. We are actually going to try and trick your Ruffini endings. Do you think it will work?


Please login or register to read the rest of this content.

Your optic nerve can be thought of as a data cord that is plugged in to each eye and connects them to your brain. The area where the nerve connects to the back of your eye creates a blind spot. There are no receptors in this area at all and if something is in that area, you won’t be able to see it. This experiment locates your blind spot.


Please login or register to read the rest of this content.