This project is for advanced students.This Stirling Engine project is a very advanced project that requires skill, patience, and troubleshooting persistence in order to work right.  Find yourself a seasoned Do-It-Yourself type of adult (someone who loves to fix things or tinker in the garage) before you start working on this project,  or you’ll go crazy with nit-picky things that will keep the engine from operating correctly.  This makes an excellent project for a weekend.


Developed in 1810s, this engine was widely used because it was quiet and could use almost anything as a heat source. This kind of heat engine squishes and expands air to do mechanical work. There’s a heat source (the candle) that adds energy to your system, and the result is your shaft spins (CD).


This engine converts the expansion and compression of gases into something that moves (the piston) and rotates (the crankshaft). Your car engine uses internal combustion to generate the expansion and compression cycles, whereas this heat engine has an external heat source.


This experiment is great for chemistry students learning about Charles’s Law, which is also known as the Law of Volumes, which describes how gases tend to expand when they are heated and can be mathematically written like this:



where V = volume, and T = temperature. So as temperature increases, volume also increases. In the experiment you’re about to do, you will see how heating the air causes the diaphragm to expand which turns the crank.


Please login or register to read the rest of this content.

Click here to go to next lesson on Ideal Gas Law.

The ideal gas law is important because you can predict how most gases with behave with a simple equation. Here’s how to do it:


Please login or register to read the rest of this content.

Momentum can be defined as inertia in motion. Something must be moving to have momentum. Momentum is how hard it is to get something to stop or to change directions. A moving train has a whole lot of momentum. A moving ping pong ball does not. You can easily stop a ping pong ball, even at high speeds. It is difficult, however, to stop a train even at low speeds.


Mathematically, momentum is mass times velocity, or p = mv.


Momentum is a vector quantity, because it’s based on velocity, so you’ll expect to have a number and a direction in your answer for momentum questions. The heavier something is and/or the faster it’s moving the more momentum it has. The more momentum something has, the more force it takes to get it to change velocity and the more force it can apply if it hits something.


Please login or register to read the rest of this content.

Think about baseball. When you hit a baseball, do you just smack it with the bat or do you follow through with the swing? You follow through right? Do you see how impulse relates to your baseball swing? If you follow through with your swing, the bat stays in contact with the ball for a longer period of time. This causes the ball to go farther. Follow through is important in golf, bowling, tennis and many sports for the same reason. The longer the force is imparted, the farther and faster your ball will go.


Ok, let’s add impulse and momentum together and see what we get. Impulse changes momentum. If an object puts an impulse on another object, the momentum of both objects will change. If you continue to push on your stalled car, you will change the momentum of the car right? If you are riding your bike while not paying any attention and crash into the back of a parked car, you will put an impulse on the car and you and the car’s momentum will change. (As a kid, I did this pretty often. That’s what you get when you ride and wonder at the same time. Believe me when I tell you that my momentum changed a lot more than the car’s did!!)


In fact, there is a mathematical formula about this impulse and momentum thing. Impulse = change in momentum or Ft = change in mv. Force x time = mass x velocity. Does that sound familiar to anyone? It’s awfully similar to Newton’s second law (F=ma) isn’t it? In fact it’s the same thing: F t = m v


Now if we divide both sides by “t” we get F = mv / t.


Another way to say v is d/t (distance over time). So now we have F = m (d/t) / t. Those two “t’s” together are the same as t2 and d/t2 is “a” (acceleration). So what we have now is F = ma!


Please login or register to read the rest of this content.

This Ft = mv is very important, in fact, it can save your life. Seat belts, air bags, crumple zones and other car safety features are based on this formula.

Please login or register to read the rest of this content.


Here is a quick experiment… first, find a wall. Then hit it with your bare fist. (Take it easy, just hit it with enough force that you feel the impact.) Now put a pillow in front of the wall and hit it with about the same force as you hit it before. With the pillow in front of the wall, you can hit it a little harder if you like but again, don’t go nuts!


What did the pillow do? It slowed the time of impact. Remember our formula Ft = mv. When the momentum of your moving fist struck the wall directly, the momentum was cut to zero instantly and so you felt enough force to hurt a bit. When the pillow was in the way it took longer for your momentum to come to zero. So you could hit the pillow fairly hard without feeling much force. Basically a bike helmet is like a pillow for you head. It slows the time of impact, so when you fall off your bike, there is much less force on your head. Just be glad your mom doesn’t make you wear a pillow on your head!


So let’s go back to momentum for a minute. Momentum is inertia in motion. It is how much force it takes to get something to slow down or change direction. One more concept I’d like to give you this month, is conservation of momentum. This is basically momentum equals momentum or mathematically mv = mv. (Momentum is mass times velocity.) When objects collide, the momentum that both objects have after the collision, is equal to the amount of momentum the objects had before the collision. Let’s take a look at this with this experiment.


Please login or register to read the rest of this content.

Second Law of Motion: Momentum is conserved. Momentum can be defined as mass in motion. Something must be moving to have momentum. Momentum is how hard it is to get something to stop or to change directions. A moving train has a whole lot of momentum. A moving ping pong ball does not. You can easily stop a ping pong ball, even at high speeds. It is difficult, however, to stop a train even at low speeds.


Materials: garden hose connected to a water faucet


Please login or register to read the rest of this content.

A rebound is a special kind of collision where objects bounce off each other instead of sticking to each other. There’s a change in the direction and a speed change.


Imagine a tennis ball striking a brick wall. The ball initially has a sped of 10 m/s, and after it hits the wall, it bounces back in the opposite direction at half the speed. What is the velocity change? It’s 10+5 m.s or 15 m/s.


Would the acceleration be greater or less than a ball that rebounds with a speed of 8 m/s? (Greater, since acceleration depends on velocity change, and the change in velocity for the second throw is 12 m.s). Which has the greatest momentum change? (The first case, since momentum change depends on velocity change.)


Please login or register to read the rest of this content.

Sometimes an object will have the same (or nearly the same) speed as it had before impact, and these are called elastic collisions. These kinds of collisions also have the same kinetic energy and same momentum before and after the collision.


Please login or register to read the rest of this content.

This is a satisfyingly simple activity with surprising results. Take a tennis ball and place it on top of a basketball... then release both at the same time.

Instant ball launcher!

You'll find the top ball rockets off skyward while the lower ball hit the floor flat (without bouncing much, if at all). Now why is that? It's easier to explain than you think...

Remember momentum? Momentum can be defined as inertia in motion. Something must be moving to have momentum. Momentum is how hard it is to get something to stop or to change directions. A moving train has a whole lot of momentum. A moving ping pong ball does not. You can easily stop a ping pong ball, even at high speeds. It is difficult, however, to stop a train even at low speeds.

Mathematically, momentum is mass times velocity, or Momentum=mv.

One of the basic laws of the universe is the conservation of momentum.  When objects smack into each other, the momentum that both objects have after the collision, is equal to the amount of momentum the objects had before the crash. Once the two balls hit the ground, all the larger ball's momentum transferred to the smaller ball (plus the smaller ball had its own momentum, too!) and thus the smaller ball goes zooming to the sky.

Materials:
  • two balls, one significantly larger than the other
Please login or register to read the rest of this content.


The Third Law of Motion shows up in collisions between objects. When two objects hit each other, they experience forces of the same magnitude but in opposite directions at impact. Those forces cause one object to speed up and the other to slow down. Even though the forces between the two objects are equal in magnitude, their accelerations are not.


Newton’s Second Law of Motion states that acceleration depends on force and mass, which means if you smack a ping pong ball with a bowling ball, one is going to have a higher acceleration than the other after the collision.


Golfers and baseball players use this principle to drive the ball far from their collision point by swinging the club or bat at high speeds, and even though the ball and bat experience the same force (in magnitude) at impact, the acceleration of the ball is much higher than the bat because the ball has a much lower mass. If you’re playing pool, then you can expect the billiard balls to experience the same accelerations after impact since the balls are all the same mass.


Please login or register to read the rest of this content.

The Conservation of Momentum tells us that the total momentum of a system (a set of objects) is a constant value that doesn’t change. The total momentum of two objects before the collision is equal to the total mo momentum of the two after the collision. The momentum lost by one object is gained by the other. You can think about momentum as money being exchanged between two people. If each person has $20, and one person gives the other $5, the money transfers from one person to the other. The money lost by the first person is gained by the other, but the total amount of money is the same before and after the transaction ($40).


Please login or register to read the rest of this content.

Physics isn’t all about equations, though. Here’s a real experiment you can do with a couple of steel ball bearings, a strong magnet, and a toilet paper tube:


Please login or register to read the rest of this content.

Explosions are a fun way to learn how to apply the law of momentum to an object that starts as a single object, and after the explosion, scatters into fragments that each have their own momentum, like a firecracker.  The vector sum of all the parts of the system could be added together to find the total momentum after the explosion, which equals the total momentum before the explosion. If we put a cannon on wheels, we can find the momentum change of the cannon ball and the acceleration of the cannon after it fires:

Please login or register to read the rest of this content.


Particles that move close to the speed of light have a different equation for momentum in order for momentum to be conserved using Einstein’s relativistic equations. The speeds of large objects like baseballs, bullets, and satellites are so much less than the speed of light so we can use Newton’s equations for it. If you’re studying electrons and other subatomic particles, you must use equations from special relativity.


Please login or register to read the rest of this content.

Sometimes it’s easiest to solve the problem by shrinking all the objects down to tiny particles. But in order to do that, you have to account for how lumpy and heavy (or light) your object. A baseball bat doesn’t balance in the exact middle of the bat. You have to account for the fact that the grip is skinnier than the end you hit with. But how would you figure that out? Here’s how…


Please login or register to read the rest of this content.

What if the mass of a system is not constant, like with a rocket? Most of the mass of a rocket when it's on the launch pad is fuel, but that gets burned and ejected through the rocket engine. So we have to use Newton's Second Law to not only the rocket alone but also to the rocket and its ejected combustion products all taken together, so the mass of the system doesn't change as the rocket accelerates... this makes solving the problem a LOT easier.

Please login or register to read the rest of this content.


If a particle moves in only one dimension, like a train on as straight track, it’s easy to answer the question about where it is because there’s only one component to it: “13m North” or “-3.6 feet.” It’s a single number with units and a positive or negative sign… that’s it. Pretty simple, right?


Well, the truth is that most objects move in two or three dimensions, and so we need more information to tell us where that object is, so we use vectors. We’re going to focus on objects moving in a two dimensional plane.


Please login or register to read the rest of this content.

We’re going to study particles (or projectiles) that move in two dimensions. This can be a cannon ball after being fired, a baseball after being thrown, a golf ball after being hit, a soccer ball after being kicked, or any other situation you can think of where an object is under the influence of only gravity after the initial force applied to move the object. (Usually we ignore wind resistance when we do these types of problems.)


The FBD of projectiles is simply a downward pointing arrow to indicate the weight. If it looks strange to have a force not in the direction of the object’s travel path, just remember that a force isn’t needed to sustain motion… it’s actually the opposite! Objects stop moving because of the forces applied to it. The FBD are always a snapshot of the forces acting on the object in that moment. The object can be moving in one direction and the force acting in another.


A projectile is a particle that is only experiencing gravity, and in most cases, gravity is only acting in one direction. Gravity doesn’t influence the horizontal motion (if we accounted for air resistance, then there would be a force in this direction as well), only the vertical motion. That’s why the ball falls to the ground when you throw it.


This means that a bullet fired horizontally from a gun experiences a constant horizontal velocity and a downward vertical acceleration. A bullet fired from a gun pointed up at a 45 degree angle also experiences a constant horizontal velocity and a downward vertical acceleration. A bullet fired from a gun in outer space away from any gravitational influences would travel up at a 45 degree path away from the gun and experience constant horizontal and vertical velocity.


Please login or register to read the rest of this content.

Now let’s do a set of physics problems so you can really see how to solve these. The first one shows you how to not only calculate an angle buried in a trig function, but also that you don’t need fancy equations to solve a problem and that you really have to understand what the problem is asking for, so you don’t waste time calculating stuff you don’t need.


Please login or register to read the rest of this content.

This problem will show you how a soccer ball can also be a projectile, and how by knowing a couple of simple things, you can find out everything you need about the problem, including how far and how high the ball traveled in addition to its time of flight.


Please login or register to read the rest of this content.

This is a simple, fun, and sneaky way of throwing tiny objects. It’s from one of our spy-kit projects. Just remember, keep it under-cover. Here’s what you need:


  • a cheap mechanical pencil
  • two rubber bands
  • a razor with adult help
Please login or register to read the rest of this content.

Click here to go to next lesson on Pirate Problem.

Okay now, back to work! Here’s a neat problem involving a pirate ship and a cannon ball. I seriously doubt pirates would be able to calculate this kind of problem when being fired at by a fortress, but you might have a captain that had a good sense based on experience of how far and fast that cannon ball could travel.


Please login or register to read the rest of this content.

When you drop a ball, it falls 16 feet the first second you release it. If you throw the ball horizontally, it will also fall 16 feet in the first second, even though it is moving horizontally… it moves both away from you and down toward the ground. Think about a bullet shot horizontally. It travels a lot faster than you can throw (about 2,000 feet each second). But it will still fall 16 feet during that first second. Gravity pulls on all objects (like the ball and the bullet) the same way, no matter how fast they go.


What if you shoot the bullet faster and faster? Gravity will still pull it down 16 feet during the first second, but remember that the surface of the Earth is round. Can you imagine how fast we’d need to shoot the bullet so that when the bullet falls 16 feet in one second, the Earth curves away from the bullet at the same rate of 16 feet each second?


Answer: that bullet needs to travel nearly 5 miles per second. (This is also how satellites stay in orbit – going just fast enough to keep from falling inward and not too fast that they fly out of orbit.)


Catapults are a nifty way to fire things both vertically and horizontally, so you can get a better feel for how objects fly through the air. Notice when you launch how the balls always fall at the same rate – about 16 feet in the first second.  What about the energy involved?


When you fire a ball through the air, it moves both vertically and horizontally (up and out). When you toss it upwards, you store the (moving) kinetic energy as potential energy, which transfers back to kinetic when it comes whizzing back down. If you throw it only outwards, the energy is completely lost due to friction.


The higher you pitch a ball upwards, the more energy you store in it. Instead of breaking our arms trying to toss balls into the air, let’s make a simple machine that will do it for us. This catapult uses elastic kinetic energy stored in the rubber band to launch the ball skyward.


Please login or register to read the rest of this content.

Click here to go to next lesson on Two Body Problems.

Two body problems are more common than you might think. Here's a two-dimensional two body problem that is a good review of Newton's Second Law that also includes friction calculations.

Please login or register to read the rest of this content.

Click here to go to next lesson on Advanced Catapult.


Since you've worked so hard, I thought you'd enjoy making a marshmallow launcher just for fun. You can calculate the horizontal and vertical acceleration based on the time of flight, you can also figure out the initial speed based on how far it went, or you can just make it and have fun with it. Here it is:

Please login or register to read the rest of this content.


So now let’s look ahead and sneak a peek into your future. Are you nervous about taking Calculus? Or if you have, have you wondered what Calculus could possibly be useful for? Here’s a two part video that shows you what Calculus is (and will even have you doing it before the end of the second video!) and how it’s used all the time in physics. Sir Isaac Newton was so frustrated that he couldn’t solve his physics problems with the math that was already developed at that time (algebra) that he set them aside to invent a branch of mathematics that could support his work in science, and that’s where Calculus came from. Here’s how we use it today in physics…


Please login or register to read the rest of this content.

Now that you know what functions are, here’s how to solve the rabbit problem:


Please login or register to read the rest of this content.

trebuchet23This experiment is for Advanced Students. For ages, people have been hurling rocks, sticks, and other objects through the air. The trebuchet came around during the Middle Ages as a way to break through the massive defenses of castles and cities. It’s basically a gigantic sling that uses a lever arm to quickly speed up the rocks before letting go. A trebuchet is typically more accurate than a catapult, and won’t knock your kid’s teeth out while they try to load it.


Trebuchets are really levers in action. You’ll find a fulcrum carefully positioned so that a small motion near the weight transforms into a huge swinging motion near the sling. Some mis-named trebuchets are really ‘torsion engines’, and you can tell the difference because the torsion engine uses the energy stored in twisted rope or twine (or animal sinew) to launch objects, whereas true trebuchets use heavy counterweights.


Please login or register to read the rest of this content.

Click here to go to next lesson on Helpful Hints.

Physics can really trip you up if you're not careful! You can to remember all kinds of things, including triangles, significant figures, vectors, units, and so much more. Here's a video on some helpful hints to keep in mind as you go along:



Yay! You've completed this section! Now it's your turn to solve your own set of physics problems:

Click here to download your problem set for projectile motion.


Vectors are different from scalar numbers because they also include information about direction. Velocity, acceleration, force, and displacement are all vectors. Speed, time, and mass are all scalar quantities. Acceleration can be either a scalar or a vector, although in physics it’s usually considered a vector. For example, a car traveling at 45 mph is a speed, whereas a car traveling 45 mph NW is a vector. When you draw a vector, it’s an arrow that has a head and a tail, where the head points in the direction the force is pulling or the object is moving.


The coordinate system you use can be a compass (north, south, east and west) which is good for problems involving maps and geography, rectangular coordinates (x and y axes) which is good for most problems with objects traveling in two directions, or polar coordinates (radius and angle) which is good for objects that spin or rotate.


We have to get really good at vectors and modeling real world problems down on paper with them, because that’s how we’ll break things down to solve for our answers. If you’re already comfortable with vectors, feel free to skip ahead to the next lesson. If you find you need to brush up or practice a little more, this section is for you.


Please login or register to read the rest of this content.

A resultant is the vector sum of all of the vectors, usually force vectors. You can’t just add the numbers (magnitudes) together! You have to account for the direction that you’re pushing the box in. Here’s what you need to know about vector diagrams and how to add vectors together:


Please login or register to read the rest of this content.

A vector in two dimensions has components in both directions. Here’s how to add vectors together to get a single resultant vector using component addition as well as trigonometry (the law of cosines and the law of sines):


Please login or register to read the rest of this content.

Vectors can be added together using the Pythagorean theorem if they are at right angles with each other (which components always are). Here’s more practice is how to do both rectangular and polar coordinate system components of a vector:


Please login or register to read the rest of this content.

deals with problems where one object moves with respect to another. For example, an airplane might be traveling at 300 knots according to its airspeed indicator, but since it has a 20 knot headwind, the speed you see the airplane traveling at is actually 280 knots. You’ve seen this in action if you’ve ever noticed a bird flapping its wings but not moving forward on a really windy day. In that case, the velocity of the wind is equal and opposite to the bird’s velocity, so it looks like the bird’s not moving.


But what if the airplane encounters a crosswind? Something that’s not straight-on light a head or tail wind? Here’s how you break it down with vectors:


Please login or register to read the rest of this content.

These types of problems aren’t limited to airplanes, though. Have you ever gone in a boat and drifted off course? Here’s what was happening from a physics point of view:


Please login or register to read the rest of this content.

These types of boat problems usually ask for the following information to be calculated: what is the resultant velocity of the boat, how much time does it take to cross the river, and what distance does the boat drift off course due to the wind? Let’s practice this type of problem again so you really can get the hang of it.


Please login or register to read the rest of this content.

Where else might you encounter this type of problem in the real world? Air balloons! A hot air balloon is pretty much at the mercy of the winds, so it's easy to calculate the component forces and velocities to determine the path of travel. Let's try one...

Please login or register to read the rest of this content.


The best way to learn how to solve physics problems is to solve physics problems. You can’t just read about it and think about it in your head… you actually have to do it, just like riding a bike. You can read all about bicycles, how they work and what the individual parts do, but until you sit in the seat and try to ride the thing, it’s really hard to understand. I am going to do a series of different sample physics problems in the videos below and explain everything in detail so you can really see how to apply Newton’s Laws of Motion to problems in the real world.


After you’re done watching the samples, download your practice problem set (at the end of the lessons) and try it yourself!


Please login or register to read the rest of this content.

Sleds are great to practice physics problems with, because there’s no friction associated with the problem (it’s sitting on ice, not on the ground). This is a good one to start with to get used to how we use the kinematic equations along with Newton’s laws and FBD’s to solve real problems.


Please login or register to read the rest of this content.

This is a really common thing to see happen in the real world, and one that people have a hard time seeing from the point of view of an outside observer just sitting on the side of the road. If you’ve ever been in a truck where this happened to you, now you know why.


Please login or register to read the rest of this content.

Here’s a good example of how non-moving objects can be analyzed for missing components by setting the acceleration term in Newton’s second law to zero. (Although I’ve never tried this one, I can only imagine that in the real world, the tire would actually be moving.)


Please login or register to read the rest of this content.

This is a good example of Newton’s second and third laws in action and how to use both laws to help you solve a problem…


Please login or register to read the rest of this content.

Imagine this one is a chandelier hanging from the ceiling, and you want to find out if your cables are strong enough…


Please login or register to read the rest of this content.

This is a great example of how to calculate forces for a static (no motion) system, and then what happens if you break loose and allow motion to happen. Note how the coordinate system was oriented to make the math a lot easier.


Please login or register to read the rest of this content.

Pulley problems are common in physics, and in this example you will learn how to draw FBD with different coordinate systems that work with each drawing individually.


Please login or register to read the rest of this content.

You can gain and lose weight just by standing on your bathroom scale in an accelerating elevator. In this problem, we'll look at what happens if there's constant velocity, positive and negative acceleration, and also free fall motion (yikes!).

Please login or register to read the rest of this content.


We're going to experiment with Newton's Third law by blowing up balloons and letting them rocket, race, and zoom all over the place. When you first blow up a balloon, you're pressurizing the inside of the balloon by adding more air (from your lungs) into the balloon. Because the balloon is made of stretchy rubber (like a rubber band), the balloon wants to snap back into the smallest shape possible as soon as it gets the chance (which usually happens when the air escapes through the nozzle area). And you know what happens next - the air inside the balloon flows in one direction while the balloon zips off in the other.

Question: why does the balloon race all over the room? The answer is because of something called 'thrust vectoring', which means you can change the course of the balloon by angling the nozzle around. Think of the kick you'd feel if you tried to angle around a fire hose operating at full blast. That kick is what propels balloons and fighter aircraft into their aerobatic tricks.

We're going to perform several experiments here, each time watching what's happening so you get the feel for the Third Law. You will need to find:

  • balloons
  • string
  • wood skewer
  • two straws
  • four caps (like the tops of milk jugs, film canisters, or anything else round and plastic about the size of a quarter)
  • wooden clothespin
  • a piece of stiff cardboard (or four popsicle sticks)
  • hot glue gun
First, let's experiment with the balloon. Here's what you can do:

Please login or register to read the rest of this content.

Please login or register to read the rest of this content.


busLet’s take a good look at Newton’s Laws in motion while making something that flies off in both directions. This experiment will pop a cork out of a bottle and make the cork fly go 20 to 30 feet, while the vehicle moves in the other direction!


This is an outdoor experiment. Be careful with this, as the cork comes out with a good amount of force. (Don’t point it at anyone or anything, even yourself!)


Here’s what you need to find:


Please login or register to read the rest of this content.

Rockets shoot skyward with massive amounts of thrust, produced by chemical reaction or air pressure. Scientists create the thrust force by shoving a lot of gas (either air itself, or the gas left over from the combustion of a propellant) out small exit nozzles.


According to the universal laws of motion, for every action, there is equal and opposite reaction. If flames shoot out of the rocket downwards, the rocket itself will soar upwards. It’s the same thing if you blow up a balloon and let it go—the air inside the balloon goes to the left, and the balloon zips off to the right (at least, initially, until the balloon neck turns into a thrust-vectored nozzle, but don’t be concerned about that just now).


A rocket has a few parts different from an airplane. One of the main differences is the absence of wings. Rockets utilize fins, which help steer the rocket, while airplanes use wings to generate lift. Rocket fins are more like the rudder of an airplane than the wings.


Another difference is the how rockets get their speed. Airplanes generate thrust from a rotating blade, whereas rockets get their movement by squeezing down a high-energy gaseous flow and squeezing it out a tiny exit hole.


If you’ve ever used a garden hose, you already know how to make the water stream out faster by placing your thumb over the end of the hose. You’re decreasing the amount of area the water has to exit the hose, but there’s still the same amount of water flowing out, so the water compensates by increasing its velocity. This is the secret to converging rocket nozzles—squeeze the flow down and out a small exit hole to increase velocity.


There comes a point, however, when you can’t get any more speed out of the gas, no matter how much you squeeze it down. This is called “choking” the flow. When you get to this point, the gas is traveling at the speed of sound (around 700 mph, or Mach 1). Scientists found that if they gradually un-squeeze the flow in this choked state, the flow speed actually continues to increase. This is how we get rockets to move at supersonic speeds or above Mach 1.


f18The image shown here is a real picture of an aircraft as it breaks the sound barrier. This aircraft is passing the speed at which sounds travel. The white cloud you see in the photo is related to the shock waves that are forming around the craft as it moves into supersonic speeds. Because the aircraft is moving through air, which is a gas, the gas can compress and results in a shock wave.


You can think of a shock wave as big pressure front. In this photo, the pressure is condensing water vapor in the air, hence the cloud. There are lots of things on earth that break the sound barrier – bullets and bullwhips, for example. The loud crack from a whip is the tip zipping faster than the speed of sound.


The rockets we’re about to build get their thrust by generating enough pressure and releasing that pressure very quickly. You will generate pressure both by pumping and by chemical reaction, which generates gaseous products. Let’s get started!


For this experiment, you will need:


Please login or register to read the rest of this content.

Please login or register to read the rest of this content.

The basic idea I want you to remember about Newton’s Third Law is that forces come in pairs. The wheels on a car spin, and as they do they grip the road and push the road back while at the same time the road pushes forwards on the wheel.


Please login or register to read the rest of this content.

To review, Newton’s First Law deals with objects that have balanced forces on it and predicts how they will behave. It’s sometimes called the law of inertia, and it’s the law that is responsible for helping you figure out which egg is raw or hard-boiled without having to crack it open. (If you haven’t done this, you really need to. All you have to do is set the egg spinning on the counter, then gently touch the top with a finger for a second, then release. The egg that stops dead is hard-boiled, and the one that starts spinning again in raw. Don’t know why this works? The raw egg has a liquid center that isn’t connected to the hard shell. When you stopped the shell for a split second, the innards didn’t have time to stop, and they have inertia. When you removed your finger, the liquid exerts a force on the shell and starts it spinning again. The hard-boiled egg is solid all the way through, so when you stopped the shell, the whole thing stops. Newton’s First Law in action.)


Newton’s Second Law of Motion deals with the behavior of objects that have unbalanced forces.  The acceleration of an object depends on two things: mass and the net force actin on the object. As the mass of an object increases, like going from a marshmallow to a bowling ball, the acceleration decreases. Or a rocket burning through its fuel loses mass, so it accelerates and goes faster as time progresses. There’s a math equation for the second law, and it’s stated like this: F = ma, where F is the net force, m is the mass, and a is the acceleration.  It’s important to note that F is the vector sum of all forces applied to the object. If you miss one or double count one of them, you’re in trouble. Also note that F is the external forces exerted on the object by other objects, not the internal forces because those cancel each other out.


Please login or register to read the rest of this content.

Here's another example of how to use Newton's second law along with vector addition of forces to figure out how to model an objects behavior in the real world:


Please login or register to read the rest of this content.


How do you find the vector sum of all the forces acting on an object?  We already looked at how to use a FBD to calculate the net applied force on an object, so now let's put it together with our knowledge about gravity (Fgrav = mg) and friction (Ffriction = μ fnormal) by using our equation: Fnet = ma.

Please login or register to read the rest of this content.


Remember when we studied Free Fall Motion and we assumed that all objects fall with the same acceleration of g or 9.81 m/s2 ?


Well, that wasn’t the whole truth, because not all objects fall with the same acceleration. But it’s a good place to start out when we’re getting our feet wet with physics. (You’ll find this happens a lot when you get to more advanced concepts… you learn the easier stuff first by ignoring a lot of other things until you can learn how to incorporate more things into your equations.) So why do objects stop accelerating and reach terminal velocity, and how why do more massive objects fall faster than less massive? To answer this, we’ll take a look at air resistance and Newton’s Second Law using the F = ma equation.


Please login or register to read the rest of this content.

This lesson may give you a sinking sensation but don’t worry about it. It’s only because we’re talking about gravity. You can’t go anywhere without gravity. Even though we deal with gravity on a constant basis, there are several misconceptions about it. Let’s get to an experiment right away and I’ll show you what I mean.


If I drop a ping pong ball and a golf ball from the same height, which one hits the ground first? How about a bowling ball and a marble?


Here’s what you need:


Please login or register to read the rest of this content.

There are situations where you have two objects interacting with each other, which means that you’ll have two unknown variables you’ll solve for (usually acceleration). You can solve these types of problems in a couple different ways. First, you can look at the entire system and consider both objects as only one object. For example, the Earth and Moon might be combined into one object if we’re looking at objects that orbit the sun, so the mass of the Earth and Moon would be combined into a single mass, m, and would also have the same acceleration, a. This approach is used if you really don’t care about what’s going on between the two objects. Or you could treat each object as it’s own separate body and draw FBD for each one. This second approach is usually used if you need to know the forces acting between the two objects.


Please login or register to read the rest of this content.

If I asked you to define the word force, what would you say? You probably have a feeling for what force means, but you may have trouble putting it into words. It’s kind of like asking someone to define the word “and” or “the”. Well, this lesson is all about giving you a better feeling for what the word force means. We’ll be talking a lot about forces in many lessons to come. The simplest way to define force is to say that it means a push or a pull like pulling a wagon or pushing a car. That’s a correct definition, but there’s a lot more to what a force is than just that.


Please login or register to read the rest of this content.

Friction is everywhere! Imagine what the world would be like without friction! Everything you do, from catching baseballs to eating hamburgers, to putting on shoes, friction is a part of it. If you take a quick look at friction, it is quite a simple concept of two things rubbing together.


However, when you take a closer look at it, it’s really quite complex. What kind of surfaces are rubbing together? How much of the surfaces are touching? And what’s the deal with this stick and slip thing anyway? Friction is a concept that’s many scientists are spending a lot of time on. Understanding friction is very important in making engines and machines run more efficiently and safely.


Here’s what you need:


Please login or register to read the rest of this content.

There are two big categories that forces fall into: contact forces, and forces resulting from something called action-at-a-distance, like gravitational, magnetic, and electrical forces. Contact forces come into play when objects are physically touching each other, like friction, air resistance, tension, and applied forces (like when your hand pushes on something, or you kick a ball with your foot).


Action-at-a-distance forces show up when the sun and planets pull on each other gravitationally. The sun isn’t in contact with the Earth, but they still exert a force on each other. Two magnets repel each other even though they don’t touch… that’s another example of action-at-a-distance force. Inside an atom, the protons and the electrons pull on each other via the electrical force.


The units of force are in “Newtons”, or N like this: “my suitcase weighs 20N”. 1 N = 1 kg * m/s2. A force is also a vector, meaning that is has magnitude and direction. The force my suitcase exerts on the ground is 20N in the downward direction. Scientists and engineers use arrows to indicate the direction of force.


We’ll learn how to do this by drawing “Free Body Diagrams”, or FBDs. These are really useful for inventors and engineers, because with one look at a structure or machine, they can see all the forces acting on it and quickly be able to tell if the object is experiencing unbalanced forces, and if so what would happen. Unbalanced forces can cause rockets to crash, aircraft to somersault, bridges to collapse, trains to roll off the track, skyscrapers to topple, machines to explode or worse!


We’re going to learn how to see forces by making a model of the real world down on paper, drawing in all the forces acting on the object and use a little math to figure out important information like acceleration, force and velocity. Most engineers and scientists spend a year or more studying just this one concept about FBDs (and also MADs: “Mass-Acceleration Diagrams”) in college, so let’s get started…


Please login or register to read the rest of this content.

In order to figure out what’s going on with an object, you have to take a look at the forces being applied to it. Forces are a vector, meaning that they have a direction and a magnitude. Your weight is not just a number, but it’s also in the downward direction. When we look at the forces that act on an object (or system of objects), we need to know how to combine all the forces into a single, resultant force which makes our math a lot easier. Here’s a set of videos that will show you how to do this:


Please login or register to read the rest of this content.

Now let’s take it a step further and look at how you’d analyze a ball being yanked on by two kids in different directions:


Please login or register to read the rest of this content.

There’s a different type of notation for x and y axes called “i-hat” and “j-hat”. This next video will show you exactly what you need to know to understand how to use them together so you don’t get confused! If you haven’t learned about “sines” or “cosines” yet, or it’s been awhile since you’ve studied triangles, this video will show you exactly what you need to know in order to solve physics problems. We’re not going to spend time deriving where these came from (if you’re interested in that, just open up a trigonometry textbook), but rather we’re going to learn how to use them in a way that real scientists and engineers do.


Take out your notebook and take notes on the law of sines, law of cosines, and write down definitions for sine, cosine, and tangent based on what you learn in the video, especially if you’re new to all this. Take it slow and you’ll catch on soon enough, because math isn’t just a shiny box of tools you just learn about, but you need to take the tools out of the box and learn how to crank with them. And sometimes, you learn how to use a impact driver when you need it, not ahead of time for someday when you might need it. Don’t get stuck if you haven’t seen some of these math principles yet or if they don’t make sense where they came from – just start using them and your brain will pick it up on the way as you learn how to apply them. Again, don’t feel like you have to complete a comprehensive course in trig to be able to figure out how to add vectors together! Just follow these simple steps…


Please login or register to read the rest of this content.

Now let’s put the coordinate systems together with vector addition into this more realistic problem we’re going to run into with our study in physics:


Please login or register to read the rest of this content.

Force fields aren’t just something for science fiction writers. They are actually a very real and very mysterious part of the world in which you live. So, what is a force field? Well, I can’t tell you. To be honest, nobody can. There’s quite a bit that is still unknown about how they work. A force field is a strange area that surrounds an object. That field can push or pull other objects that wander into its area. Force fields can be extremely tiny or larger than our solar system.


A way to picture a force field is to imagine an invisible bubble that surrounds a gizmo. If some other object enters that bubble, that object will be pushed or pulled by an invisible force that is caused by the gizmo. That’s pretty bizarre to think about isn’t it? However, it happens all the time. As you sit there right now, you are engulfed in at least two huge force fields, the Earth’s magnetic field and the Earth’s gravitational field.


Gravity doesn’t care what size something is or whether or not it is moving, Gravity treats all things equally and accelerates them the same. Notice, that I say gravity accelerates all things equally, not gravity pulls on all things equally. Gravity does pull harder on some things than on other things. This is why I weigh more than a dog. I am made of more stuff (I have more atoms) than the average dog, so gravity pulls on me more.


Weight is nothing more than a measure of how much gravity is pulling on you. This is why you can be “weightless” on a scale in space. You are still made of stuff, but there’s a balance of the gravity that is pulling on you and the outward force due to the acceleration since you’re moving in a circle (which you do in order to remain in orbit), so it feels like you have no weight.


Please login or register to read the rest of this content.

The larger a body is, the more gravitational pull or the larger a gravitational field it will have. The Moon has a fairly small gravitational field (if you weighed 100 pounds on Earth, you’d only be 17 pounds on the Moon), the Earth’s field is fairly large and the Sun has a HUGE gravitational field (if you weighed 100 pounds on Earth, you’d weigh 2,500 pounds on the sun!).


As a matter of fact, both the dog and I both have gravitational fields! Since we are both bodies of mass we have a gravitational field which will pull things towards us. All bodies have a gravitational field. However, my mass is sooooo small that the gravitational field I have is miniscule. Something has to be very massive before it has a gravitational field that noticeably attracts another body.


So what’s the measurement for how much stuff you’re made of? Mass. Mass is basically a weightless measure of how much matter makes you, you. A hamster is made of a fairly small amount of stuff so she has a small mass. I am made of more stuff, so my mass is greater than the hamster’s. Your house is made of even more stuff so its mass is greater still.


So, here’s a question. If you are “weightless” in space, do you still have mass? Yes, the amount of stuff you’re made of is the same on Earth as it is in your space ship. Mass does not change but since weight is a measure for how much gravity is pulling on you, weight will change.


Did you notice that I put weightless in quotation marks? Wonder why?


Weightlessness is a myth! Believe it or not, one is never weightless. A person can be pretty close to weightless in very deep space but the astronauts in a space ship actually do have a bit of weight.


Please login or register to read the rest of this content.

The difference between weight and mass often trips up college students, so let’s straighten this out. The mass of an object is how much stuff something is made out of, and the weight is the force of gravity acting on it. Mass deals with how much stuff there is, and weight deals with the pull of the Earth. Mass will never change no matter where you put the object, unless you take a bite out of it or pile more stuff on top of it. The weight can change depending on where you place it, like on another planet.


Please login or register to read the rest of this content.

If you could stand on the Sun without being roasted, how much would you weigh? The gravitational pull is different for different objects. Let’s find out which celestial object you’d crack the pavement on, and which your lightweight toes would have to be careful about jumping on in case you leapt off the planet.


Weight is nothing more than a measure of how much gravity is pulling on you. Mass is a measure of how much stuff you’re made out of. Weight can change depending on the gravitational field you are standing in. Mass can only change if you lose an arm.


Materials


  • Scale to weigh yourself
  • Calculator
  • Pencil
Please login or register to read the rest of this content.

Units In the US system of units, both mass and weight are measured in “pounds” or “lb”. That’s a BIG problem, because mass isn’t the same as weight, so how could their units be the same? The answer is, the units are not the same, but they look very similar. The units for mass are kg (kilograms) or lbm (pronounced “pounds mass”) and the units for force are N (Newtons) or lbf (pronounced “pounds force”). The trouble comes in when we drop that third character and “lbf” or “lbm” becomes just plain “lb”. That’s the problem, and it’s a major headache for students to understand. Here’s the main thing I want you to remember: 1 lbm is NOT equal to 1 lbf. Here’s a video that will explain how you use both of these in a real world:


Please login or register to read the rest of this content.

Friction is the force between two objects in contact with one another when one object moves (or tries to move) across another on the surface. Friction is dependent on the types materials that are in contact with one another (rubber versus leather, for example), and how much pressure is put on the materials, and whether the surfaces are wet, dry, hot, cold… it’s really complicated. Friction happens due to the electromagnetic forces between two objects. Friction is not necessarily due to the roughness of the objects but rather to chemical bonds “sticking and slipping” over one another.


Please login or register to read the rest of this content.

Hovercraft transport people and their stuff across ice, grass, swamp, water, and land. Also known as the Air Cushioned Vehicle (ACV), these machines use air to greatly reduce the sliding friction between the bottom of the vehicle (the skirt) and the ground. This is a great example of how lubrication works – most people think of oil as the only way to reduce sliding friction, but gases work well if done right.


In this case, the readily-available air is shoved downward by the pressure inside of balloon. This air flows down through the nozzle and out the bottom, under the CD, lifting it slightly as it goes and creating a thin layer for the CD to float on.


Although this particular hovercraft only has a ‘hovering’ option, I’m sure you can quickly figure out how to add a ‘thruster’ to make it zoom down the table! (Hint – you will need to add a second balloon!)


Here’s what you need:


Please login or register to read the rest of this content.

Please login or register to read the rest of this content.

What if there’s a lot of friction? Have you ever felt that you need to give something a shove before it starts moving? You have to overcome static friction in order to experience kinetic friction. (Static friction is higher in magnitude than kinetic friction, generally speaking.)


The equation for determining the friction is: f = μ Fnormal, where μ = the coefficient of friction.


For kinetic friction: fkinetic = μk Fnormal, where μk = the coefficient of kinetic friction
For static friction: fstatic = μs Fnormal, where μs = the coefficient of kinetic friction


Scientists have to figure out μs and μk by doing experiments, and they compile that data in tables for others to look up when they need it. Here’s how you can do that very same experiment to determine the coefficient of friction between two surfaces:


Please login or register to read the rest of this content.

Now let’s talk about the other ever present force on this Earth, and that’s friction. Friction is the force between one object rubbing against another object. Friction is what makes things slow down.


Without friction things would just keep moving unless they hit something else. Without friction, you would not be able to walk. Your feet would have nothing to push against and they would just slide backward all the time like you’re doing the moon walk.


Friction is a very complicated interaction between pressure and the type of materials that are touching one another. Let’s do a couple of experiments to get the hang of what friction is.
Here’s what you need:


Please login or register to read the rest of this content.

First Law of Motion: Objects in motion tend to stay in motion unless acted upon by an external force. Force is a push or a pull, like pulling a wagon or pushing a car. Gravity is a force that attracts things to one another. Gravity accelerates all things equally. Which means all things speed up the same amount as they fall.


Materials: ball
Please login or register to read the rest of this content.


Click here to go to next lesson on Newton’s Law of Motion in Detail.

Ok, sort of a silly experiment I admit. But here’s what we’re going for – there is an invisible force acting on you and the ball. As you will see in later lessons, things don’t change the way they are moving unless a force acts on them. When you jump, the force that we call gravity pulled you back to Earth. When you throw a ball, something invisible acted on the ball forcing it to slow down, turn around, and come back down. Without that force field, you and your ball would be heading out to space right now!
Please login or register to read the rest of this content.


Please login or register to read the rest of this content.

Click here to go to next lesson on Inertia.

Ever wonder how magicians work their magic? This experiment is worthy of the stage with a little bit of practice on your end.


Here’s how this activity is laid out: First, watch the video below. Next, try it on your own. Make sure to send us your photos of your inventions here!


Please login or register to read the rest of this content.

Next time you watch a drag race, notice the wheels. Are they solid metal discs, or do they have holes drilled through the rims? I came up with this somewhat silly, but incredibly powerful quick science demonstration to show my 2nd year university students how one set of rims could really make a difference on the racetrack (with all other things being equal).

Please login or register to read the rest of this content.

Please login or register to read the rest of this content.



Click here to go to next lesson on Introducing the Idea of Net Forces.


It is very rare, especially on Earth, to have an object that is experiencing force from only one direction. A bicycle rider has the force of air friction pushing against him. He has to fight against the friction between the gears and the wheels. He has gravity pulling down on him. His muscles are pushing and pulling inside him and so on and so on.


Even as you sit there, you have at least two forces pushing and pulling on you. The force of gravity is pulling you to the center of the Earth. The chair is pushing up on you so you don’t go to the center of the Earth. So with all these forces pushing and pulling, how do you keep track of them all? That’s where net force comes in.


The net force is when you add up all of the forces on something and see what direction the overall force pushes in. The word “net”, in this case, is like net worth or net income. It’s a mathematical concept of what is left after everything that applies is added and subtracted. The next activity will make this clearer.


Here’s what you need:


Please login or register to read the rest of this content.

Click here to go to next lesson on Forces.

We’re going to learn about kinematics, which is the words scientists use to explain the motion of objects. By learning about scalars, vectors, speed, velocity, acceleration, distance, and more, you’ll be able to not only accurately describe the motion of objects, but be able to predict their behavior. This is very important, whether you’re planning to land a spaceship on a moon, catapult a marshmallow in your mouth from across the room, or win a round of billiards.




Be sure to take out a notebook and copy down each example problem right along with me so you take good notes as you go along. It’s a totally different experience when you are actively involved by writing down and working through each problem rather than passively sitting back and watching.


Click here to start the first lesson in kinematics.


If you jump out of an airplane, how fast would you fall? What’s the greatest speed you would reach? In a moment, we’re going to find out, but first let’s take a look at objects that are allowed to fall under the influence of just gravity. There are two important things to keep in mind for free falling objects. First, the object doesn’t experience air resistance. Second, the acceleration of the object is a constant value of 9.8 m/s2 or 32.2 ft/s2.
Please login or register to read the rest of this content.


This lesson may give you a sinking sensation but don’t worry about it. It’s only because we’re talking about gravity. You can’t go anywhere without gravity. Even though we deal with gravity on a constant basis, there are several misconceptions about it. Let’s get to an experiment right away and I’ll show you what I mean.


If I drop a ping pong ball and a golf ball from the same height, which one hits the ground first? How about a bowling ball and a marble?


Here’s what you need:


Please login or register to read the rest of this content.

Click here to go to next lesson on Velocity.

If acceleration is constant, is velocity also constant? Nope. The image at the top of this page shows that the object is speeding up every second by a certain rate, so velocity is not a constant value. The question is, can we figure out what the speed is at different intervals of time? Of course we can! Here’s how…
Please login or register to read the rest of this content.


Do you expect a curved or a straight line on a p-t graph for free falling objects? A straight line is the slope of the graph, which is also the velocity. A straight line would mean that the velocity is constant, we we already see from the experiment that it isn’t. So we can expect a curve on our p-t graph that looks like a downhill bunny slope… the object starts out slow, then increases speed so the slope will also increase in “steepness” as time goes on. If we indicate the positive direction as upwards, then the slope on the p-t graph will be negative.
Please login or register to read the rest of this content.


For constant acceleration, we can expect a straight line on our v-t graph to have a slope of 9.8 m/s2  in the negative quadrant of the graph, starting at the origin. The object started at rest, then finished with a large negative velocity, meaning that the object is speeding up in the downward direction. The constant negative slope means constant negative acceleration. Remember, that negative sign doesn’t mean it’s slowing down, but rather the minus sign indicates which direction the acceleration is happening in.
Please login or register to read the rest of this content.


If you jump out of an airplane, how fast would you fall? What's the greatest speed you would reach? Let's practice figuring it out without jumping out of a plane.

This experiment will help you get the concept of velocity by allowing you to measure the rate of fall of several objects. It's also a great experiment to record in your science journal.

First, you'll need to find your materials: Please login or register to read the rest of this content.

Please login or register to read the rest of this content.

You have just taken in a nice bunch of information about the wild world of gravity. This next section is for advanced students, who want to go even deeper. There's a lot of great stuff here but there's a lot of math as well. If you're not a math person, feel free to pass this up. You'll still have a nice understanding of the concept. However, I'd recommend giving it a try. There are some fun things to do and if you're not careful, you might just end up enjoying it!

Here's what you need: Please login or register to read the rest of this content.

If I toss a ball horizontally at the exact same instant that I drop another one from my other hand, which one reaches the ground first? For this experiment, you need: Please login or register to read the rest of this content.



Please login or register to read the rest of this content.

Click here to go to next lesson on Force and Mass.


We're going to learn more about why gravity accelerates all objects equally when we study Newton's Laws in the next section, where you'll discover how force is related to mass. Right now, here's another set of hints on solving physics problems...

Please login or register to read the rest of this content.


The motion of objects can be described by words, with images, as well as with the language of math by using graphs, charts, and equations.

We've already learned about the p-t and v-t graphs in our experiments, and now it's time to figure out the kinematic equations that will describe the motion of objects by relating the time, distance, displacement, velocity, speed, and acceleration. They're a really handy set of four equations that you can use to figure out how fast you're moving in a swing, how far your car will skid, the height your rocket will reach, or how far your baseball will go.

Please login or register to read the rest of this content.


Let’s try another example problem so you can see how to apply the equations to solve for things you really want to know…
Please login or register to read the rest of this content.


Once you get the hang of how to solve the four kinematic equations, you can put this together with your understanding of the v-t and p-t diagrams to make a more complete picture of the motion in your system. Remember how we learned that the slope of the line on a v-t graph is the acceleration of the object, and that you could use the area bounded by the axis and the slope to find the displacement? Now you’ve got two ways of figuring out the displacement, velocity, acceleration, and time in any problem. How can you use the two methods together to make you more efficient and effective at solving physics programs? Here’s how…
Please login or register to read the rest of this content.


Physics is your big chance to show off your inner artist by drawing what you see through a scientists eyes in a special way so others can understand your big ideas. We're going to practice making models in our mind of what's going on in the real world, and learning how to write it down on paper using the language of mathematics so you can communicate with others and work together designing your inventions and predicting what might happen next. All scientists, engineers, technicians, including folks like Feynman and Einstein, learned how to represent the real world on paper in a visual way using diagrams. (Although Nobel prize winner Dr. Richard Feynman got frustrated and invented his own diagrams, which we still use today in quantum mechanics.)

Please login or register to read the rest of this content.